Math 336 Sample Problems

One notebook sized page of notes (both sides) will be allowed on the test. The test will be comprehensive. The final exam is at 8:30 am, Monday, June 10, in the regular classroom.

1. Is there an analytic function f that maps $|z|<1$ into $|z|<1$ such that $f\left(\frac{1}{2}\right)=\frac{2}{3}, f\left(\frac{1}{4}\right)=\frac{1}{3}$?
2. Suppose u_{n} is a sequence of harmonic functions on a domain W and suppose the sequence converges uniformly on compact sets to a function u. Prove that u is harmonic.
3. Let $f(z)=\frac{z-a}{1-\bar{a} z}$, where $|a|<1$. Let $D=\{z:|z|<1\}$. Prove that
(a)

$$
\frac{1}{\pi} \int_{D}\left|f^{\prime}(z)\right|^{2} d x d y=1
$$

(b)

$$
\frac{1}{\pi} \int_{D}\left|f^{\prime}(z)\right| d x d y=\frac{1-|a|^{2}}{|a|^{2}} \log \left(\frac{1}{1-|a|^{2}}\right) .
$$

4. Let $u(x, y), v(x, y)$ be continuously differentiable as functions of (x, y) in a domain Ω. Let $f(z)=$ $u(z)+i v(z)$. Suppose that for every $z_{0} \in \Omega$ there is an r_{0} (depending on z_{0}) such that

$$
\int_{\left|z-z_{0}\right|=r} f(z) d z=0
$$

for all r with $r<r_{0}$. Prove that f is analytic in Ω. Hint: Show that f satisfies the Cauchy-Riemann equations in Ω.
5. Prove that all conformal maps from the upper half plane to the unit disk have the form

$$
\alpha \frac{z-\beta}{z-\bar{\beta}},
$$

where $|\alpha|=1, \Im(\beta)>0$.
6. Let $D_{2}=\{z:|z|<2\}$ and $I=\{x \in \mathbf{R}:-1 \leq x \leq 1\}$. Find a bounded harmonic function u, defined in $D_{2}-I$ such that u does not extend to a harmonic function defined in all of D_{2}.
7. Find a conformal map from the region between the two lines $y=x$ and $y=x+2$ to the upper half plane, which sends 0 to 0 .
8. Let f and g be entire functions so that satisfy $f^{2}+g^{2}=1$. Prove that there is an entire function h so that $f=\cos (h), g=\sin (h)$.
9. Find a function, $h(x, y)$, harmonic in $\{x>0, y>0\}$, such that

$$
h(x, y)= \begin{cases}0 & \text { if } 0<x<2, y=0 \\ 1 & \text { if } x>2, y=0 \\ 2 & \text { if } x=0, y>0\end{cases}
$$

10. Suppose that u is harmonic on all of \mathbb{C} and $u \geq 0$. Prove that u is constant.
11. Suppose f is analytic on $H=\{z=x+i y: y>0\}$ and suppose $|f(z)| \leq 1$ on H and $f(i)=0$. Prove

$$
|f(z)| \leq\left|\frac{z-i}{z+i}\right|
$$

12. Let $u(z)$ be harmonic in $\{z: 0<|z|<1\}$. Let $P=\int_{|z|=r} \frac{\partial u}{\partial n} d s$, where $0<r<1$. Show that P does not depend on r. Prove that

$$
u(z)=\frac{P}{2 \pi} \log |z|+\operatorname{Re}(f(z))
$$

where f is analytic in $\{z: 0<|z|<1\}$.
13. Prove that if $|z|<1$

$$
\lim _{n \rightarrow \infty} \prod_{k=0}^{k=n}\left(1+z^{2^{k}}\right)=\frac{1}{1-z}
$$

14. Suppose $f \in \mathcal{O}(0<|z-a|<\epsilon)$ and that $\Re(f)$ is bounded. Prove that a is a removable singularity.
15. Let f be an analytic function defined on $\{|z|<1\}$ such that $\Re(f(z)) \geq 0$.
(a) Prove that $\Re(f(z))>0$.
(b) Suppose $f(0)=1$. Prove that

$$
\frac{1-|z|}{1+|z|} \leq|f(z)| \leq \frac{1+|z|}{1-|z|} .
$$

16. Prove that $\sum_{1}^{\infty} \frac{\sin n z}{2^{n}}$ represents an analytic function on $|\Im(z)|<\log 2$.
17. Prove that $\sum_{1}^{\infty} \frac{e^{i n z}}{n^{2}}$ represents an analytic function in $\Im(z)>0$. Can you say anything about $\sum_{1}^{\infty} \frac{\sin n z}{n^{2}} ?$
18. There may be homework problems or example problems from the text on the final. Don't forget previous sample problems.
