Math 336 Sample Problems

One notebook sized page of notes (both sides) will be allowed on the test. The test will be comprehensive. The final exam is at 8:30 am, Monday, June 10, in the regular classroom.

- 1. Is there an analytic function f that maps |z| < 1 into |z| < 1 such that $f(\frac{1}{2}) = \frac{2}{3}, f(\frac{1}{4}) = \frac{1}{3}$?
- 2. Suppose u_n is a sequence of harmonic functions on a domain W and suppose the sequence converges uniformly on compact sets to a function u. Prove that u is harmonic.

3. Let
$$f(z) = \frac{z-a}{1-\bar{a}z}$$
, where $|a| < 1$. Let $D = \{z : |z| < 1\}$. Prove that
(a)
 $\frac{1}{\pi} \int_{D} |f'(z)|^2 dx dy = 1.$
(b)
 $\frac{1}{\pi} \int_{D} |f'(z)| dx dy = \frac{1-|a|^2}{|a|^2} \log\left(\frac{1}{1-|a|^2}\right).$

4. Let u(x, y), v(x, y) be continuously differentiable as functions of (x, y) in a domain Ω . Let f(z) = u(z) + iv(z). Suppose that for every $z_0 \in \Omega$ there is an r_0 (depending on z_0) such that

$$\int_{|z-z_0|=r} f(z)dz = 0,$$

for all r with $r < r_0$. Prove that f is analytic in Ω . Hint: Show that f satisfies the Cauchy-Riemann equations in Ω .

5. Prove that all conformal maps from the upper half plane to the unit disk have the form

$$\alpha \frac{z-\beta}{z-\bar{\beta}},$$

where $|\alpha| = 1, \Im(\beta) > 0.$

- 6. Let $D_2 = \{z : |z| < 2\}$ and $I = \{x \in \mathbf{R} : -1 \le x \le 1\}$. Find a bounded harmonic function u, defined in $D_2 I$ such that u does not extend to a harmonic function defined in all of D_2 .
- 7. Find a conformal map from the region between the two lines y = x and y = x + 2 to the upper half plane, which sends 0 to 0.

Sample Problems

- 8. Let f and g be entire functions so that satisfy $f^2 + g^2 = 1$. Prove that there is an entire function h so that $f = \cos(h), g = \sin(h)$.
- 9. Find a function, h(x, y), harmonic in $\{x > 0, y > 0\}$, such that

$$h(x,y) = \begin{cases} 0 & \text{if } 0 < x < 2, y = 0, \\ 1 & \text{if } x > 2, y = 0, \\ 2 & \text{if } x = 0, y > 0 \end{cases}$$

- 10. Suppose that u is harmonic on all of \mathbb{C} and $u \ge 0$. Prove that u is constant.
- 11. Suppose f is analytic on $H = \{z = x + iy : y > 0\}$ and suppose $|f(z)| \le 1$ on H and f(i) = 0. Prove

$$|f(z)| \le \left|\frac{z-i}{z+i}\right|.$$

12. Let u(z) be harmonic in $\{z: 0 < |z| < 1\}$. Let $P = \int_{|z|=r} \frac{\partial u}{\partial n} ds$, where 0 < r < 1. Show that P does not depend on r. Prove that

$$u(z) = \frac{P}{2\pi} \log |z| + \operatorname{Re}(f(z))$$

where f is analytic in $\{z: 0 < |z| < 1\}$.

13. Prove that if |z| < 1

$$\lim_{n \to \infty} \prod_{k=0}^{k=n} (1+z^{2^k}) = \frac{1}{1-z}$$

- 14. Suppose $f \in \mathcal{O}(0 < |z a| < \epsilon)$ and that $\Re(f)$ is bounded. Prove that a is a removable singularity.
- 15. Let f be an analytic function defined on $\{|z| < 1\}$ such that $\Re(f(z)) \ge 0$.
 - (a) Prove that $\Re(f(z)) > 0$.
 - (b) Suppose f(0) = 1. Prove that

$$\frac{1-|z|}{1+|z|} \le |f(z)| \le \frac{1+|z|}{1-|z|}.$$

16. Prove that $\sum_{1}^{\infty} \frac{\sin nz}{2^n}$ represents an analytic function on $|\Im(z)| < \log 2$.

Sample Problems

- 17. Prove that $\sum_{1}^{\infty} \frac{e^{inz}}{n^2}$ represents an analytic function in $\Im(z) > 0$. Can you say anything about $\sum_{1}^{\infty} \frac{\sin nz}{n^2}$?
- 18. There may be homework problems or example problems from the text on the final. Don't forget previous sample problems.