Math 336 Sample $\mathfrak{P r o b l e m s ~}$

One notebook sized page of notes will be allowed on the test. The test will cover up to $\S 6.1$ in the text (excluding those sections for which there was no homework).

1. Let f be an analytic function on an open connected set W. Suppose $0 \in W$ and suppose $\left|f\left(\frac{1}{n}\right)\right|<e^{-n}$ for all $n>0$. Prove that $f(z)=0$ for all $z \in W$.
2. Using Rouché's theorem, show that $z^{5}+5 z^{3}+z-2$ has three roots in the set $\{z:|z|<1\}$.
3. Suppose $f(z)$ is an entire function and $|f(z)|<1+|z|^{1 / 2}$. Prove that f is constant.
4. Using contour integration Prove that

$$
\int_{0}^{\pi} \frac{d t}{1+\sin ^{2} t}=\frac{\pi}{\sqrt{2}} .
$$

5. Let f be an entire function. Let $a \in \mathbb{C}, b \in \mathbb{C}$. Let $R>\max \{|a|,|b|\}$. Prove that

$$
\frac{1}{2 \pi i} \int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} d z=\frac{f(b)-f(a)}{b-a} \text { if } a \neq b
$$

6. Suppose f is analytic on the square $Q=\{z:|x|<1,|y|<1\}$ and suppose f is continuous on the closure of Q. Denote the sides of the square by $S_{j}, j=1, \ldots, 4$ starting with the rightmost side. Suppose $|f(z)| \leq R_{j}$ when $z \in S_{j}$. Prove

$$
|f(0)|^{4} \leq R_{1} R_{2} R_{3} R_{4}
$$

7. Let $D=\{z:|z|<1\}$. Suppose f is analytic on an open set that includes the closure of D and suppose $|f(z)|<1$ if $|z|=1$. Prove that there is a unique $\zeta \in D$ such that $f(\zeta)=\zeta$.
8. Let u and v be harmonic on an open connected set W. Suppose that $u(z) v(z)=0$ on an open subset of W. Prove that either u or v is identically 0 on W.
9. Suppose f is analytic in $\{0<|z|<r\}$ for some $r>0$. Suppose also that $|f(z)|<|z|^{-1+\epsilon}$ in $\{0<|z|<\delta\}$, where $\epsilon>0$. Prove that f has a removable singularity at 0 .
10. Let $D=\{z:|z|<1\}$. Let f be analytic and non-constant on W, and suppose $\bar{D} \subset W$. Suppose $|f|$ is constant on ∂D. Prove that f has at least one zero in D.
11. Prove that

$$
\sum_{n=1}^{\infty} d(n) z^{n}=\sum_{n=1}^{\infty} \frac{z^{n}}{1-z^{n}} \text { for }|z|<1
$$

where $d(n)$ is the number of divisors of n. Carefully consider convergence issues.
12. Suppose f is entire and $|f(z)| \leq\left|K e^{z}\right|$ for some K. Prove that $f(z)=C e^{z}$ for some C.
13. There may be homework problems, example problems from the text, or requests for statements of theorems on the midterm.

