Math 336 Sample Problems

One notebook sized page of notes will be allowed on the test. The test will cover through section 3.3 in the text.

- 1. Suppose that v is the harmonic conjugate of u and u is the harmonic conjugate of v. Show that u and v must be constant.
- 2. Let u be harmonic on W. Prove that $f(z) = u_x(z) iu_y(z)$ is harmonic.

3. Compute
$$\int_{|z|=3} \frac{dz}{(z-1)(z-2)(z-4)}$$
.

- 4. Give an example of a function f for which $\int_{|z|=r} f(z) dz = 0$ for all r > 0 although f is not analytic.
- 5. Let f(z) = u(x, y) + iv(x, y) be twice continuously (real) differentiable on an open set. Suppose that the real and imaginary parts of f(z) and zf(z) are harmonic. Prove that f is analytic.
- 6. Let a be a complex number and suppose |a| < 1. Let $f(z) = \frac{z-a}{1-\overline{a}z}$. Prove the following statements.
 - (a) |f(z)| < 1, if |z| < 1.
 - (b) |f(z)| = 1, if |z| = 1.
- 7. Suppose P(z) is a polynomial and that all of its roots have positive real part. Prove that the zeros of the derivative of P have positive real part.
- 8. Taylor, problem 11, section 3.2.
- 9. Let $f(z) = e^{-z^{-4}}$ if $z \neq 0$, f(0) = 0. Prove that f is analytic at z if $z \neq 0$ and that the Cauchy-Riemann equations are satisfied at 0. Is f analytic at 0?
- 10. Let $z_j = e^{\frac{2\pi i j}{n}}$ denote the *n* roots of unity. Let $c_j = |1 z_j|$ be the n 1 chord lengths from 1 to the points $z_j, j = 1, \ldots, n 1$. Prove that the product $c_1 \cdot c_2 \cdots c_{n-1} = n$. *Hint*: Consider $z^n 1$.

Sample Problems

- 11. Let $f(z) = x^2 y^2 + i \log(x^2 + y^2)$. Find the points at which f is complex differentiable. Find the points at which g(z) = x iy is complex analytic.
- 12. Let f(z) = u(z) + iv(z), u = Re(f(z)), v = Imf((z)) be analytic on an open connected set Ω . Suppose there are real numbers a, b, c with $a^2 + b^2 \neq 0$ and au(z) + bv(z) = c for all $z \in \Omega$. Prove that f is constant.
- 13. Let f be analytic within and on a circle $\Gamma = \{|z a| = r\}$. Prove that $Re\left(\int_{\Gamma} \overline{f}(z)f'(z)dz\right) = 0$.
- 14. Compute $\int_{|z|=r} \frac{|dz|}{|z-a|^2}$, where $|a| \neq r$. Use the fact that on $\{|z|=r\}, |dz|=-ir\frac{dz}{z}$; and then use the Cauchy integral formula.
- 15. You will need to know the definitions of the following terms and statements of the following theorems.
 - (a) Modulus (absolute value) and argument of a complex number
 - (b) Complex derivative
 - (c) Complex analytic function
 - (d) Cauchy-Riemann equations
 - (e) Harmonic functions and harmonic conjugate
 - (f) Complex exponential function
 - (g) Complex logarithm
 - (h) Cauchy's integral theorem and formula
- 13. There may be homework problems or example problems from the text on the midterm.