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Abstract

In this paper I will provide an introduction to the theory of cellular
automata and review a paper by Michele D’amico, Giovanni Manzini,
and Luciano Margara [3], On computing the entropy of cellular au-
tomata, in which the authors study the topological entropy of cellular
automata. The main problems addressed are proving a closed form for
the topological entropy of D-dimensional linear cellular automata over
Zm for D = 1 and for D ≥ 2 and showing how to efficiently compute
the entropy of positively expansive cellular automata. I will cover the
closed form for the entropy of linear CA.

Figure 1: A “pulsar” in Conway’s Game of Life.
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1 Introduction

1.1 What are cellular automata?

Cellular automata, abbreviated CA, are a class of discrete models often
studied in computability theory, theoretical biology, and physics. A cellular
automaton is a regular grid of cells with a finite number of states, for example
black or white as in Figure 1. Then over a discrete number of time steps, t,
the state of each cell evolves based on the states of the cells in a neighborhood
of itself. The configuration after each time step is called a generation.

The concept was originally discover in the 1940s by Stanislaw Ulam and
John von Neumann at Los Alamos National Laboratory. It was not until the
1970s, though, that CA were studied in academia. It was the Game of Life,
also known as Life, a cellular automaton devised by British mathematician
John Conway in 1970.

1.2 Conway’s Game of Life

Conway’s Life is a zero-player game, meaning that its evolution is determined
by its initial state with no further input. The game is played on an infinite
grid of square cells where each cell has two states, alive or dead. Each cell
interacts with the eight cells around it each time step to determine its new
state. The rules are as follows:

1. Any live cell with fewer than two live neighbors dies, as if caused by
under-population.

2. Any live cell with two or three live neighbors lives on to the next
generation.

3. Any live cell with more than three live neighbors dies, as if by over-
crowding.

4. Any dead cell with exactly three live neighbors becomes a live cell, as
if by reproduction.

The game is particularly interesting because it is a universal Turing machine,
that is, anything that can be computed can be computed within the Game
of Life. It is this game that opened up the field of cellular automata.
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2 Applications

The theory of cellular automata is being used to create ecological, biological,
and physical models to great success. In this section I will briefly cover two
different practical applications that arose from the study of CA.

2.1 Forest Fires

In [5] a model is presented for predicting the spreading of fire in homoge-
neous and inhomogeneous forests. The model can easily incorporate weather
conditions and land topography. Fires are a part of almost all natural ecosys-
tems, and over the course of many centuries have exerted an exceptionally
important influence on the condition of forests all over the planet. The en-
vironmental effects of forest fires are huge and there is a constant demand
for more effective tools to manage and fight these fires. The authors present
the first cellular automata approach to modeling forest fires. They state the
problem as follows:

Given a scalar velocity field R(x, y) which is the distribution
of the rates of fire spread at every point in a forest, the forest fire
front at time t1, the wind direction and speed, and the height and
shape of the land, determine the fire front at any time t2 > t1.

To create the model the authors partitioned the forest into a uniform grid of
square cells. The state is then given by the ratio of burned out cell area to
total cell area. So a cell state of 1 would mean that the area around the cell
is completely burned out, while a state of 0 would be completely unburned.
Then each time step moves the fire a cell length divided by the speed of fire
spreading in each direction. This creates a dynamic model for the spread of
forest fires which were in good agreement with fire spreading in real forests.
This model served as the first basis for the development of algorithms that
simulate real fires in real forests.

2.2 Settlement Patterns

In [4] the author applies a cellular automata algorithm to predict the devel-
opment of a rural countryside near Toronto, Canada. The model was created
similarly to the forest fire model in [5], the area was broken up into a grid
and environmental factors such as major roads and land topography were
used to create the different states that each cell could attain. Two scenarios
were run: (1) a static set of rules; and (2) rules that changed as conditions
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or policies within the township changed. Both models were in agreement
with each other and the actual development until the second scenario’s rules
began to change with the township’s own policies. After that point both
models still captured and represented selected aspects of the real system.
Scenario 1 added new houses mainly on major roads and the density of clus-
ters was quite similar to measured data. While scenario 2 failed to match
densities, but more accurately showed the spatial distribution of the clusters.

These are simply two of the early models that came out of the study of
cellular automata. This paper will be focused on the results proven by M.
D’amico et al. in [3]. The paper focuses on topological entropy, which is
one of the most studied properties of dynamical systems. The topological
entropy measures the uncertainty of the forward evolution of a dynamical
system when a complete description of initial configurations is unknown. Be-
cause cellular automata are deterministic dynamical systems, given a com-
plete description of any configuration we may exactly determine the future
configurations. Topological entropy gives a quantitative estimation of the
uncertainty that is introduced when a complete configuration is not known.

3 Definitions

3.1 Cellular automata

Let Z and N denote the set of integers and natural numbers, respectively.
Let Zm, m ≥ 2, denote the finite commutative ring of integers modulo m,
that is, for m ≥ 2 let, Zm = {0, 1, . . . ,m− 1}. We define the space of
configurations, CD

m =
{
c | c : ZD → Zm

}
, which consists of all functions

from ZD into Zm. An element of CD
m can be visualized as an infinite D-

dimensional lattice in which each cell contains an element of Zm.

Let s ≥ 1. A neighborhood frame of size s is an ordered set of distinct
vectors u1, u2, . . ., us ∈ ZD. Given f : Zs

m → Zm, which we call a local
rule, a D-dimensional cellular automata based on f is defined as the
pair (CD

m , F ), where F : CD
m → CD

m , is the global transition map defined
as follows.

[F (c)](v) = f(c(v + u1), . . . , c(v + us)), where c ∈ CD
m , v ∈ ZD. (1)

That is, any cell v in the configuration F (c) is a function of the content of
cells v + u1, v + u2, . . ., v + us in the configuration c. The local rule f and
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the neighborhood frame completely determine F .

F (c) will denote the result of the application of the map F to the con-
figuration c, and c(V) will denote the value assumed by c in v. For n ≥ 0,
we recursively define Fn(c) by Fn(c) = F (Fn−1(c)), where F 0(c) = c. Let
(CD

m , F ) be a CA based on the local rule f . We say that f is permutative
in the variable xi, −r ≤ i ≤ r, if and only if, no matter which values are
given to the other 2r variables, the modification of the value of xi causes
the modification of the output produced by f . We denote by f (n) the local
rule associated to Fn.

3.2 Linear CA over Zm

In the case of a linear CA the set Zm has the usual sum and product
operations that make it a commutative ring. We will denote [x]m to be
the integer x taken modulo m. Linear CA have a local rule of the form
f(x1, . . . , xs) = [

∑s
i=1 λixi]m with λ1, . . . , λs ∈ Zm. Hence, for a linear

D-dimensional CA (1) becomes

[F (c)](v) =

[
s∑

i=1

λic(v + ui)

]
m

, where c ∈ CD
m , v ∈ ZD. (2)

For linear 1-dimensional CA the local rule f can be written as f(x−r, . . . , xr) =
[
∑r

i=−r aixi]m where at least one between a−r and ar is nonzero. In this case
(1) becomes

[F (c)](i) =

 r∑
j=−r

ajc(i+ j)


m

, where c ∈ C 1
m, i ∈ Z.

3.3 Topological entropy of CA

The topological properties of CA are usually defined with respect to the
metric topology induced by the Tychonoff distance over the configuration
space CD

m . With this topology CD
m is a Cantor set, that is it is a compact,

perfect and totally disconnected set, and every CA is a uniformly continuous
map. The definition of topological entropy H of a continuous map F : X →
X over a compact space X, denoted H (X,F ), is generally accepted as a
measure of the complexity of the dynamics of F over X. It is defined in [1],
but informally it is a measure of the uncertainty of the evolution of the CA
given only partial information on the initial conditions. It is uncomputable

6



for general CA, but in the linear case we will be able to give a closed form,
which is the goal of the paper. The entropy of a 1-dimensional CA over C 1

m

satisfies H (F ) ≤ 2r logm.

3.4 Lyapunov exponents for CA

The Lyapunov exponent of a dynamical system is a quantity that char-
acterizes the rate of separation of infinitesimally close trajectories and is
denoted by λ.

For every x ∈ C 1
m and s ≤ 0 we set

W+
s (x) = {y ∈ C 1

m : y(i) = x(i) for all i ≥ s},

W−s (x) = {y ∈ C 1
m : y(i) = x(i) for all i ≤ −s}.

We have that W+
i (x) ⊂ W+

i+1(x) and W−i (x) ⊂ W−i+1(x). For every n ≥ 0
we define

Λ̃+
n (x) = min{s ≥ 0 : Fn(W+

0 (x)) ⊂W+
s (Fn(x))},

Λ̃−n (x) = min{s ≥ 0 : Fn(W−0 (x)) ⊂W−s (Fn(x))}.

Simply put, Λ̃+
n (x) and Λ̃−n (x) have a simple meaning. W+

0 (x) is the set of
configurations which agree with x in all cells with index i ≥ 0. By comparing
Fn(x) with Fn(W+

0 (x)) the value Λ̃+
n (x) measures how far differences in cells

with index i < 0 can propagate to the right-hand side in n iterations of F .
Similarly, Λ̃−n (x) measures how far differences in cells with index i > 0 can
propagate to the left-hand side in n iterations of F . We will now introduce
an important 1-dimensional CA, the right shift map (C 1

m, σ) defined by
[σ(c)](i) = c(i − 1). Now we can introduce the following shift invariant
quantities:

Λ−n (x) = max
j∈Z

Λ̃−n (σj(x)), Λ+
n (x) = max

j∈Z
Λ̃+
n (σj(x)), (3)

where σ denotes the right shift map. Finally, the values λ+(x) and λ−(x)
defined by

λ+(x) = lim
n→∞

1

n
Λ+
n (x), λ−(x) = lim

n→∞
Λ−n (x) (4)

are called, respectively, the right and left Lyapunov exponents of the CA
F for the configuration x. If F is linear it is easy to see that these do not
depend on x.
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3.5 Dynamical properties of CA

For any discrete time dynamical system defined on a metric space, it is
possible to define important properties which provide useful information on
the long term behavior of the system. On a generic system (X,F ), where
F : X → X, where we assume that X is equipped with a distance d and
that the map F is continuous on X according to the metric topology induced
by d. For CA the Tychonoff distance satisfies this property. We denote by
B(x, ε) the open set {y ∈ X : d(x, y) < ε}.

A discrete time dynamical system (X,F ) is positively expansive if and
only if there exists δ > 0 such that for every x, y ∈ X, x 6= y there exists
n ≥ 0 such that d(Fn(x), Fn(y)) > δ. The value δ is called the expansivity
constant.

Intuitively a map is positively expansive if every pair of enough close
points eventually separate by at least δ under iteration of F . If a map is
positively expansive, then, for all practical purposes, the dynamics of the
map defies numerical approximation. Small errors in computation which are
introduced by round-off become magnified upon iteration.

A discrete time dynamical system (X,F ) is sensitive to initial conditions
if and only if there exists δ > 0 such that for any x ∈ X and for any ε > 0,
there exists y ∈ B(x, ε) and n ≥ 0, such that d(Fn(x), Fn(y)) > δ. The
value δ is called the sensitivity constant.

A map is sensitive to initial conditions, or simply sensitive, if there exist
points arbitrarily close to x which eventually separate from x by at least δ
under iteration of F . Note that not all points near x need eventually sep-
arate from x under iteration, but there must be at least one such point in
every neighborhood of x.

A discrete time dynamical system (X,F ) is equicontinuous at x ∈ X
if and only if for any δ > 0 there exists ε > 0 such that for any y ∈ B(x, ε)
and n ≥ 0 we have d(Fn(x), Fn(y)) < δ.

A discrete time dynamical system (X,F ) is equicontinuous if and only
if it is equicontinuous at every x ∈ X.

Sensitivity and equicontinuity are related, by comparing the definitions
we can easily see that

F is not sensitive⇔ ∃x : F is equicontinuous at x. (5)
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For linear CA we have that (CD
m , F ) is equicontinuous if and only if it is

equicontinuous at a single point x ∈ CD
m . So (5) becomes

(CD
m , F ) is not sensitive ⇔ (CD

m , F ) is equicontinuous. (6)

4 Computing Entropy - Statement and Proof of
Main Theorems

4.1 Theorem 1

Let (C 1
m, F ) be a 1-dimensional CA over Zm with local rule f(x−r, . . . , xr) =

[
∑r

i=−r aixi]m, and let m = pk11 · · · p
kh
h be the prime factor decomposition of

m. For i = 1, . . . , h define

Pi = {0} ∪ {j : gcd(aj , pi) = 1}, Li = minPi, Ri = maxPi.

Then, the right and left Lyapunov exponents of (C 1
m, F ) are

λ+ = − min
1≤i≤h

{Li} and λ− = max
1≤i≤h

{Ri}. (7)

4.2 Proof of Theorem 1

Let (CD
m , f) be a linear CA, and let q be any factor of m. For any configu-

ration c ∈ CD
m , [c]q will denote the configuration in CD

q defined by

[c]q(v) = [c(v)]q = c(v) mod q for all v ∈ ZD.

Similarly, Fq will denote the map [F ]q : CD
q → CD

q defined by [F ]q(c) =
[F (c)]q.

We will need the following lemma, whose proof is provided in [3].

Let (C 1
pk
, F ) be a linear 1-dimensional CA over Zpk (p prime)

with local rule f(x1, . . . , xs) = [
∑s

i=1 aixi]pk . Assume there ex-
ists a1 such that gcd(a1, p) = 1, and let

P̂ = {j : gcd(aj , p) = 1}, L̂ = min P̂, R̂ = max P̂,

Then, there exists h ≥ 1 such that the local rule f (h) associated
to F h has the form

f (h)(x−hr, . . . , xhr) =

 hR̂∑
i=hL̂

bixi


pk

with gcd(bhL̂, p) = gcd(bhR̂, p) = 1.

(8)
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The proof goes by way of taking the power series of the local rule and then
uses induction to show that fh has the correct form.

The proof will be given only for the left Lyapunov exponent λ− since
the proof for λ+ is analogous. We know that, since F is a linear map, Lya-
punov exponents are independent of the particular configuration considered.
Hence, in the rest of the proof we can safely write λ− and Λ− istead of λ−(x)
and Λ−n (x).

We first consider the case m = pk with p prime. From the lemma we
know that there exist h ≥ 1 and R̂ ∈ Z such that f (h) is permutative in the
variable xhR̂ and does not depend on any other variable xj with j > hR̂.

Let λ−
Fh denote the left Lyapunov exponent of the map F h. If R̂ ≤ 0 we

have that f (h) does not depend on variables with positive index. Hence,
if two configurations differ in cells with index i > î such differences never
propagate left under iteration of F . We conclude that λ−

Fh = 0. Assume

now that R̂ > 0. Let x and x′ be two configurations such that x(i) = x′(i)
for every i < î and x(̂i) 6= x′(̂i). Since f (h) is rightmost permutative, we have
[F h(x)](i) = [F h(x′)](i) for every i < î−hR̂ and x(̂i−hR̂) 6= x′(̂i−hR̂), i.e.,
the difference in cell î moves left exactly hR̂ positions. Hence λ−

Fh = hR̂.

We now show that λ−
Fh = hR̂ implies λ−F = R̂. From (4) we have

λ−F = lim
n→∞

1

n
Λ−n = lim

n→∞

1

nh
Λ−nh =

1

h
lim
n→∞

1

n
Λ−nh =

1

h
λ−
Fh .

Since R = max(0, R̂) then λ−F = R and the proof is complete.
Consider now the general case m = pq, where gcd(p, q) = 1. By the

Chinese Remainder Theorem we know that the ring Zm is isomorphic to the
direct product Zp⊗Zq. Hence, Fn can be expressed as a linear combination
of [F ]np and [F ]nq as follows

Fn = αq[F ]np + βp[F ]nq

where [αq]p = 1 and [βp]q = 1. This means that two configurations Fn(x)
and Fn(y) differ in the ith cell if and only if the configurations [F ]np ([x]p)
and [F ]np ([y]p) or the configurations [F ]nq ([x]p) or [F ]nq ([y]p) differ in the ith

cell. Hence, differences in cells with index i > î can propagate left to the
farthest cell reachable by either [F ]p or [F ]q. Hence, λ−f = max(λ−[F ]p

, λ−[F ]q
).

The proof of the theorem follows by a simple inductive argument on the
numb of primes in the factorization of the modulus m.
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4.3 Theorem 2

Let (C 1
m, F ) be a 1-dimensional CA over Zm with local rule f(x−r, . . . , xr) =

[
∑r

i=−r aixi]m, and let m = pk11 · · · p
kh
h denote the prime factor decomposi-

tion of m. Let Li and Ri be defined as in Theorem 1. Then we can express
the topological entropy, H , in the closed form,

H (C 1
m, F ) =

h∑
i=1

ki(Ri − Li) log(pi). (9)

4.4 Comments on Theorem 2

Theorem 2 follows from a lemma proved by D’amico et al. in [3].

Letf(x−r, . . . , xr) = [
∑r

i=−r aixi]pk be any linear local rule
defined over Zpk with p prime. Let F be the 1-dimensional global
transition map associated to f . Let

P = {0} ∪ {j : gcd(aj , p) = 1}, L = minP, and R = maxP.

Then
H (C 1

pk , F ) = k(R− L) log(p).

This lemma is proven using theorem 1 and applying the definition of topo-
logical entropy given in [1].

4.5 Putting it all together

Using the previous theorems the authors go on to show that a D-dimensional
linear CA over Zm with D ≥ 2 has F sensitive to initial conditions and
entropy that is infinite or F is equicontinuous and the entropy is zero. This
gives a complete characterization of linear CA over Zm. These results are the
first step in understanding which classes of CA have Lyapunov exponents
and topological entropy that are computable. The next step is to attempt
to generalize to general CA, not just linear.

5 Further Applications

The more we understand the computability and entropy of different cellular
automata the better we can create models which accurately predict the
future. This paper is huge step towards solving problems 1 and 2 presented
in [8].
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Problem 1 is about finding an overall classification of cellular automaton
behavior. This approaches that by quantifying the entropy in any linear
system. We know that if the entropy is infinite that the system will not yield
a homogeneous state and if it is zero that it either evolves to a homogeneous
state or simple separated periodic structures. Completing this classification
would allow us to further understand cellular automata and the systems
which they model.

Problem 2 is about the relationship between entropies and Lyapunov
exponents. This paper solves that problem for linear CA in Zm. This bridges
the gap where, intuitively the rate of divergence of trajectories and the
entropy of the system ought to be related, but it was previously unproven.
This provides hope that we will be able to find a closed form relating the
Lyapunov exponents and entropies for different types of CA.

Understanding and being able to compute entropies for cellular automata
may lead to the development of CA that can model thermodynamic systems.
It is thought that CA may be the key to understanding a large number of
subjects on a deeper level. Some wonder if the current model of physics
(physics with particle-like objects) could be a cellular automata at its most
fundamental level [2].
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