Lindelof Maximum Principle

Theorem 1. Suppose u is bounded and harmonic in a bounded open connected set W. Suppose $\limsup_{z \to p \in \partial W} u(z) \leq M$ except for a countable set $\{q_j\}$. Then $u(z) \leq M$.

Proof. This proof needs to be modified. Choose $\epsilon_j > 0$ so that $\sum_{1}^{\infty} \epsilon_j < \infty$. Let d be the diameter of W. Let $a \in W$ and let c be the distance from a to ∂W . Then

$$w(z) = \sum \epsilon_j \log \frac{|z - q_j|}{d}$$

converges uniformly on |z - a| < d/2. Hence u(z) - w(z) is harmonic on W and we can apply our proof for the case of a finite number of exceptional points.

Remark 1. It's not obvious how to modify this for a set of measure 0.