Math $336 \mathfrak{F i n a l \mathfrak { a x a m } , ~ 8 : 3 0 ~ a m , ~ J u n e ~ 4 , ~} 2012$

Name:

One notebook-size page of notes is allowed (each side may be used).

1. Suppose that f is an entire function such that

$$
|f(z)| \leq a|z|^{m}+b
$$

for all z. Then prove that f is a polynomial of degree at most m.
2. Is there an analytic function f that maps $|z|<1$ into $|z|<1$ such that $f\left(\frac{1}{2}\right)=\frac{3}{4}, f\left(\frac{1}{4}\right)=\frac{1}{3}$?
3. Suppose that u is a harmonic function and v is its conjugate harmonic function. Prove that $u^{3}-3 u v^{2}$ is harmonic.
4. Prove that there is no entire function f with $f\left(\frac{i}{n}\right)=\frac{1}{n+1}$ for all n. Hint: show that this implies that $f(z)=\frac{z}{z+i}$.
5. (a) Prove that if $\Pi\left(1+a_{k}\right)$ converges then $\prod\left|1+a_{k}\right|$ converges.
(b) Give an example to show that convergence of $\prod\left|1+a_{k}\right|$ does not imply convegence of $\prod\left(1+a_{k}\right)$.
6. Find a function, $h(x, y)$, harmonic in $\{y>0\}$, such that

$$
h(x, y)= \begin{cases}1 & \text { if } 0<x<3, y=0 \\ 0 & \text { if } x>3, y=0 \\ 0 & \text { if } x<0, y=0\end{cases}
$$

Is this function unique?
7. Let f and g be entire functions so that satisfy $f^{2}+g^{2}=1$. Prove that there is an entire function h so that $f=\cos (h), g=\sin (h)$.
8. Does there exist a function f, which is analytic in a neighborhood of 0 , for which:
(a) $f\left(\frac{1}{n}\right)=f\left(-\frac{1}{n}\right)=\frac{1}{n^{2}}$ for all large integers n ?
(b) $f\left(\frac{1}{n}\right)=f\left(-\frac{1}{n}\right)=\frac{1}{n^{3}}$ for all large integers n ?

In each case, either give an example or prove no such example exists.

