$\mathfrak{M a t h} 336$ Midterm, May 21, 2012

Name:

One notebook sized page of notes is allowed.

1. Using Rouché's theorem, show that $z^{7}+5 z^{3}+z-2$ has three roots in the set $\{z:|z|<1\}$.
2. Let f be an analytic function on an open connected set W. Suppose $0 \in W$ and suppose $\left|f\left(\frac{1}{n}\right)\right|<e^{-n}$ for all $n>0$. Prove that $f(z)=0$ for all $z \in W$.
3. Suppose f is analytic on the disk $D=\{z:|z|<1\}$ and suppose f is continuous on the closure of D. Suppose

$$
\left|f\left(e^{i t}\right)\right| \leq R_{j},
$$

when $(j-1) \frac{\pi}{2}<t<j \frac{\pi}{2}$ for $j=1,2,3,4$. Prove

$$
|f(0)|^{4} \leq R_{1} R_{2} R_{3} R_{4} .
$$

4. Using a contour integral compute

$$
\int_{-\infty}^{\infty} \frac{d x}{x^{4}+1}
$$

