Math 535–Complex Analysis: Problem Set 15

Gill

Due: Friday February 24, 2012 3pm

Problem 1

- (a) Show that for $k \geq 2$ the product $\prod_{n=k}^{\infty} (1 + \frac{(-1)^n}{n})$ converges, and find its value. (b) Determine convergence or divergence of $\prod_{n=1}^{\infty} (1 + \frac{i}{n})$ and of $\prod_{n=1}^{\infty} |1 + \frac{i}{n}|$.

Problem 2

Let D be a proper subdomain of \mathbb{C}^* , and $\{z_n\}$ be a sequence of distinct points in D with no limit point in D and $\{m_n\}$ be a sequence of positive integers. Complete the proof started in class that there exists $f \in H(D)$ which has a zero of order m_n at each z_n and no other zeros in D.

Problem 3

Let there be given a sequence $\{z_n\}$ of distinct points in \mathbb{C} with $\lim_{n\to\infty} z_n = \infty$, and sequences $\{a_n\},\{b_n\}$ in \mathbb{C} . Prove that there exists an entire function f such that $f(z_n)=a_n$ and $f'(z_n)=b_n$ for all $n \geq 1$.

Problem 4

Let $\{z_n\}$ be a sequence of not necessarily distinct complex numbers in $\mathbb D$ satisfying the Blaschke condition

$$\sum_{n=1}^{\infty} (1 - |z_n|) \le \infty$$

Prove that there exists a function $f \in H^{\infty}(\mathbb{D})$ such that $f(z_n) = 0$ for $n \geq 1$ and f has no other zeros in \mathbb{D} .

Problem 5

Find a constant C such that

$$|\log|e^{i\theta} - 1| \le \log\frac{\pi}{|\theta|} + C, \quad \theta \in [-\pi, \pi]$$

Find the best constant if you can.

Problem 6

Let $f \in H(\mathbb{D}(0, R))$, and 0 < r < s < R.

(a) Prove that

$$\log^+ M(r, f) \le \frac{s+r}{s-r} T(s, f)$$

(b) Give an example of $f \in H(\mathbb{D})$ for which f is unbounded in \mathbb{D} but $\sup_{0 < r < 1} T(r, f) < \infty$. Examples like the ones in (b) show, in contrast to (a), there can be no absolute constant for which $\log^+ M(r, f) \leq CT(r, f)$, for every $f \in H(\mathbb{D}(0, R))$ and 0 < r < 1.

Problem 7 Extra Do Not Turn In

Give an example of a nonconstant bounded holomorphic function in $\mathbb D$ such that every point of $\partial \mathbb D$ is a limit point of zeros of f.

Complex Analysis PS 15