Cauchy-Riemann equations

March 31, 2011

Definition 1. Let f(z) be a complex valued function defined in a neighborhood of a point $z_1 = x_1 + iy_1$. Then f is complex differentiable at z_1 if

$$f(z) = f(z_1) + p(z)(z - z_1),$$
(1)

where p is continuous at z_1 . We define the complex derivative of f at z_1 to be the value of p at z_1 .

$$f'(z_1) = p(z_1). (2)$$

Theorem 1. Let f(z) = u(x, y) + iv(x, y). Then f is complex differentiable at z_1 if and only if u and v are real differentiable at (x_1, y_1) and

$$u_x(x_1, y_1) = v_y(x_1, y_1), \ u_y(x_1, y_1) = -v_x(x_1, y_1).$$
 (3)

These are called the Cauchy-Riemann equations.

Proof. Let us write equation (1) in matrix form:

$$\begin{bmatrix} u(x,y)\\v(x,y] \end{bmatrix} = \begin{bmatrix} u(x_1,y_1)\\v(x_1,y_1) \end{bmatrix} + \begin{bmatrix} a(x,y) & -b(x,y)\\b(x,y) & a(x,y) \end{bmatrix} \begin{bmatrix} x-x_1\\y-y_1 \end{bmatrix}$$
(4)

We can write this line by line

$$u(x,y) = u(x_1,y_1) + a(x,y)(x-x_1) - b(x,y)(y-y_1)$$
(5)

$$v(x,y) = v(x_1,y_1) + b(x,y)(x-x_1) + a(x,y)(y-y_1).$$
(6)

In this form we see that u and v are real differentiable at (x_1, y_1) and $u_x = v_y$, $u_y = -v_x$ at (x_1, y_1) .

Next suppose u and v are real differentiable at (x_1, y_1) and (3) is true. Let $a_1 = u_x(x_1, y_1) = v_y(x_1, y_1)$, $b_1 = v_x(x_1, y_1) = -u_y(x_1, y_1)$. Let's write the definition of real differentiability as follows

$$u(x,y) = u(x_1,y_1) + a_1(x-x_1) - b_1(y-y_1) + e(x,y)$$
(7)

$$v(x,y) = v(x_1,y_1) + b_1(x-x_1) + a_1(y-y_1) + d(x,y),$$
(8)

where $e(x,y)/|z-z_1| \to 0, d(x,y)/|z-z_1| \to 0$ as $z \to z_1$. So

$$f(z) = f(z_1) + (a_1 + ib_1)(z - z_1) + \epsilon(z)(z - z_1), \text{ where } \epsilon(z) = \frac{e(z) + id(z)}{z - z_1}.$$
(9)

and $\epsilon(z) \to 0$ as $z \to z_1$. This can be rewritten as

$$f(z) = f(z_1) + p(z)(z - z_1),$$
(10)

where $p(z) = a_1 + ib_1 + \epsilon(z)$ and $p(z) \to a_1 + ib_1$ as $z \to z_1$ so f is complex differentiable at z_1 .