Cauchy-Riemann equations

March 31, 2011

Definition 1. Let $f(z)$ be a complex valued function defined in a neighborhood of a point $z_{1}=x_{1}+i y_{1}$. Then f is complex differentiable at z_{1} if

$$
\begin{equation*}
f(z)=f\left(z_{1}\right)+p(z)\left(z-z_{1}\right) \tag{1}
\end{equation*}
$$

where p is continuous at z_{1}. We define the complex derivative of f at z_{1} to be the value of p at z_{1}.

$$
\begin{equation*}
f^{\prime}\left(z_{1}\right)=p\left(z_{1}\right) \tag{2}
\end{equation*}
$$

Theorem 1. Let $f(z)=u(x, y)+i v(x, y)$. Then f is complex differentiable at z_{1} if and only if u and v are real differentiable at $\left(x_{1}, y_{1}\right)$ and

$$
\begin{equation*}
u_{x}\left(x_{1}, y_{1}\right)=v_{y}\left(x_{1}, y_{1}\right), u_{y}\left(x_{1}, y_{1}\right)=-v_{x}\left(x_{1}, y_{1}\right) \tag{3}
\end{equation*}
$$

These are called the Cauchy-Riemann equations.
Proof. Let us write equation (1) in matrix form:

$$
\left[\begin{array}{c}
u(x, y) \tag{4}\\
v(x, y
\end{array}\right]=\left[\begin{array}{c}
u\left(x_{1}, y_{1}\right) \\
v\left(x_{1}, y_{1}\right)
\end{array}\right]+\left[\begin{array}{cc}
a(x, y) & -b(x, y) \\
b(x, y) & a(x, y)
\end{array}\right]\left[\begin{array}{l}
x-x_{1} \\
y-y_{1}
\end{array}\right]
$$

We can write this line by line

$$
\begin{align*}
& u(x, y)=u\left(x_{1}, y_{1}\right)+a(x, y)\left(x-x_{1}\right)-b(x, y)\left(y-y_{1}\right) \tag{5}\\
& v(x, y)=v\left(x_{1}, y_{1}\right)+b(x, y)\left(x-x_{1}\right)+a(x, y)\left(y-y_{1}\right) \tag{6}
\end{align*}
$$

In this form we see that u and v are real differentiable at $\left(x_{1}, y_{1}\right)$ and $u_{x}=v_{y}, u_{y}=-v_{x}$ at $\left(x_{1}, y_{1}\right)$.
Next suppose u and v are real differentiable at $\left(x_{1}, y_{1}\right)$ and (3) is true. Let $a_{1}=u_{x}\left(x_{1}, y_{1}\right)=$ $v_{y}\left(x_{1}, y_{1}\right), b_{1}=v_{x}\left(x_{1}, y_{1}\right)=-u_{y}\left(x_{1}, y_{1}\right)$. Let's write the definition of real differentiability as follows

$$
\begin{align*}
& u(x, y)=u\left(x_{1}, y_{1}\right)+a_{1}\left(x-x_{1}\right)-b_{1}\left(y-y_{1}\right)+e(x, y) \tag{7}\\
& v(x, y)=v\left(x_{1}, y_{1}\right)+b_{1}\left(x-x_{1}\right)+a_{1}\left(y-y_{1}\right)+d(x, y) \tag{8}
\end{align*}
$$

where $e(x, y) /\left|z-z_{1}\right| \rightarrow 0, d(x, y) /\left|z-z_{1}\right| \rightarrow 0$ as $z \rightarrow z_{1}$. So

$$
\begin{equation*}
f(z)=f\left(z_{1}\right)+\left(a_{1}+i b_{1}\right)\left(z-z_{1}\right)+\epsilon(z)\left(z-z_{1}\right), \text { where } \epsilon(z)=\frac{e(z)+i d(z)}{z-z_{1}} \tag{9}
\end{equation*}
$$

and $\epsilon(z) \rightarrow 0$ as $z \rightarrow z_{1}$. This can be rewritten as

$$
\begin{equation*}
f(z)=f\left(z_{1}\right)+p(z)\left(z-z_{1}\right) \tag{10}
\end{equation*}
$$

where $p(z)=a_{1}+i b_{1}+\epsilon(z)$ and $p(z) \rightarrow a_{1}+i b_{1}$ as $z \rightarrow z_{1}$ so f is complex differentiable at z_{1}.

