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1. Introduction

The article represent three different protocols for solving the “100 Prisoners and a Light 
Bulb” riddle, including the explicit computations of average runtime. The article also 
discusses the variation of the original riddle and explore the existence of the solution in 
altered situation.

2. The riddle

The riddle is as followings: 

One hundred prisoners have been newly ushered into prison. The warden tells them that  
starting tomorrow, each of them will be placed in an isolated cell, unable to communicate  
amongst each other. Each day, the warden will choose one of the prisoners uniformly at  
random with replacement, and place him in a central interrogation room containing only  
a light bulb with a toggle switch. The prisoner will be able to observe the current state of  
the light bulb. If he wishes, he can toggle the light bulb. He also has the option of  
announcing that he believes all prisoners have visited the interrogation room at some 
point in time. If this announcement is true, then all prisoners are set free, but if it is 
false, all prisoners are executed. The warden leaves, and the prisoners huddle together to  
discuss their fate. Can they agree on a protocol that will guarantee their freedom? 

3. Protocol Design 

3.1 Basic Assumption
In order to develop a feasible strategy for the problem, we firstly make some basic 
assumption to the ambiguous situation described above. In next session, we will discuss if 
we can construct a solution without these assumption.

Assumption 1 Prisoners can count how may days have elapsed. 
Assumption 2 The initial bulb state is OFF. 

3.2 Protocol I
Since warden chooses prisoner uniformly, each prisoner will eventually get into the room 
once.  Based on this fact we can develop our first solution.

3.2.1 Strategy: The days are split into n-day blocks. During each n-day block, each 
prisoner operates according to the following instructions upon entering the interrogation 
room: 

• If it is day 1 for the current block: 
– If the bulb is OFF, turn the bulb ON.
– If the bulb is already ON, and the first n-day block has already elapsed, 

announce that all prisoners have visited. 

• On any other day of the current block: 
– If it is your first time visiting the room during the current block, do nothing.



– If it is your second time visiting the room during the current block, turn the 
light OFF. 

– If it is your third or more time visiting the room during the current block, do 
nothing. 

3.2.2 Explanation: The general idea is that eventually, with probability 1, we will be 
lucky enough to have a block of n-days during which no prisoner enters the room twice, 
or in other words, during which every prisoner will enter the room exactly once. Then the 
bulb which was turned ON on day 1 will still be ON after n-days, since bulbs are only 
turned OFF upon a second return visit. Thus, if the bulb remains ON on the first day of a 
new block, we know that every prisoner must have visited the interrogation room during 
the block that had just elapsed. 

3.3.3 Runtime Evaluation: We now compute the expected runtime of this protocol. Let 
X be the number of days the protocol requires. Let B be the number of n-day blocks 
required till the protocol succeeds. Then B is a geometric random variable with 
parameter
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Since the expectation of a geometric random variable is the reciprocal of its parameter, 
and X = n×B , the expected number of days required is 
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, we can get the conclusion that
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When n = 100, E [X] equals 1.072 × 1044 days. Statically speaking, this can't be taken as 
an acceptable solution. 

 
3.3 Assumption on asymmetric

One of the possible sources of difficulty in solving this riddle is the natural idea that every 
prisoner should should follow the same instructions. If we can make the assumption that 
each prisoner can follow different instruction, we can make the problem easier to solve. 

Assumption 3 : The protocol can be asymmetric, which means each prisoner can follow 
different instruction. 

3.4 Protocol II (One Counter Strategy)

3.4.1 Strategy: Letting prisoners have different roles, we assign one prisoner to be “the 
counter”. He will maintain an integer variable in his head that is initialized to 1. Call this 
variable T . Upon entering the room, prisoners adhere to the following instructions: 

• If you are not the counter: 
– If the bulb is OFF, and you have never turned the bulb ON before,  

turn it ON.



– If the bulb is ON, do nothing. 

• If you are the counter: 
– If the bulb is OFF, do nothing.
– If the bulb is ON, turn it OFF, and set T=T+1.
– If T = n, announce that all prisoners have visited. 

3.4.2 Explanation: The idea behind this protocol is that every prisoner besides the 
counter will turn ON the bulb exactly once, whenever he can. When the bulb is ON, no 
one can turn it OFF except for the counter. Eventually the counter will enter the room, 
turn this bulb OFF, and increment the count T . In this way, each prisoner indicates his 
presence in the room to the counter by leaving an ON bulb which is eventually recorded 
by the counter. 

3.4.3 Runtime Evaluation: To analyze the runtime, we can split the process into 
epochs. Let Xi denote the number of days between the first day on which T = i, and the 
first day on which T = i + 1. Between these two days, two events must occur: 

(1) An unrecorded prisoner must be chosen, causing the bulb to be turned 
ON. Let Yi denote the number of days between from when T = i until  this event 
occurs. 

(2) The counter must then enter the room to record this ON bulb. Let Zi denote the 
number of days from when the bulb is turned ON until this occurs. 

Then                                        
Xi = Yi + Zi 

Letting X be a random variable corresponding to the number of days the protocol 
requires in total, we have 
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In big O, since Hn ∼ ln n , 

E[X]  = O( n2 )

When n = 100, E [X] equals 10417.74 days, or 28.54 years, which is an acceptable 
answer.



The variance of this protocol is also be easily computed. Asymptotically, 

var[X]=O( n3 ).

3.4.4 Improvement : 
We can make some improvement to the Single Counter Protocol in different aspect.

Improvement.1:Under the one counter protocol, the prisoners escape if and only if the 
bulb, which is initially OFF, alternates its state from OFF to ON exactly n−1 times. Non-
counters can also count these state transitions as they witness them. So, a marginal 
improvement in the algorithm can be made by realizing that if any very lucky non-counter 
witnesses all n − 1 such transitions before the counter does, then the non-counter is 
equally qualified to declare victory and preempt the counter in the very last epoch of the 
algorithm. 

However, Since the standard one counter protocol already requires a runtime of O( n2 ), 
and this new policy for non-counters can only save at most n days (since it only affects 
the last epoch), the improvement does not affect the asymptotic.

Improvement.2: The One Counter Protocol can be slightly improved by assigning the 
role of counter dynamically, rather than a priori. We use the following policy: the counter 
is the first person to enter the room twice in the first n days. 

• Stage I: Days 1 through n: 
– Days 1 through n − 1: The first person to enter the room twice will turn the 

bulb ON, and assign himself to be the counter.
– Day n: If the light is still OFF, declare victory. Otherwise, turn off the light. 

• Stage II: (all remaining days) 
   Follow the normal One Counter Protocol, but with the following modifications: 

– The counter only counts up to n − k + 1, where k is the index of the day that 
the counter entered the interrogation room twice.

– Prisoners who saw an ON bulb in Stage I do nothing. 

To illustrate the idea behind this protocol, suppose we have 100 prisoners, and the first 
person to enter the interrogation room twice enters on day 20. This prisoner becomes the 
counter, and he can deduce that in the previous 19 days, there have been exactly 19 
distinct visitors, including himself. Thus, when Stage II ensues, he would only need to 
tally (n-1) - (k-2) = n-k+1 = 99-18 = 81 prisoners. Lastly, if we are so lucky that no 
counter is assigned on the 100th day, then every visitor in the first 100 days must have 
been distinct , so we declare victory. 

The dynamic counter assignment does constitute an improvement in average runtime 
over the One Counter Strategy. When n ≥ 4, we have the conclusion that 

E[X(single counter)]  -  E[X(dynamic assignment)]  ≥ 1/8

Improvement.3: Observe that in the Single Counter Protocol, we will have long 
stretches of time where the bulb is ON and we are waiting for the counter to enter the 
room. This suggests that it maybe useful to have multiple alternative counters who are 
also authorized to record the ON bulb and turn it OFF. Furthermore, it would be nice if 
we could count faster to n. That is, rather than counting 1-by-1 to n, what if we counted 
in jumps of 10 instead? 

The following Two-Stage Counting Protocol improves on the Single Counter Protocol in 
both of the aforementioned aspects. Firstly, it divides up the task of counting the 
prisoners amongst a group of assistant counters. Secondly, the head counter counts up to 



n more quickly by collecting the aggregated counts of the assistant counters. 

3.5 Improved Protocol (Two Stage Counting)

3.5.1 Strategy: To begin the protocol’s description, there are three different possible 
roles for a prisoner: head counter, assistant counter, and “drone”. There is exactly one 
head counter, and there is some number of assistant counters a  n, while the vast≪  
majority prisoners are still drones regular prisoner with no counting tasks. The head 
counter and all assistant counters all have an integer variable in their heads, initialized to 
one. 

The protocol has two stages, Stage I and Stage II. Each stage lasts for a certain number 
of preset days, which we will call s1 and s2 , respectively. In Stage I, each assistant 
counter is responsible for counting a quota of q drones. In Stage II, the head counter will 
be responsible for counting up the assistant counters who have reached their quota. In 
this way, the head counter counts toward n in jumps of size q. If the head counter does 
not succeed by the end of Stage II, then we repeat Stage I and Stage II again, still 
maintaining all the mental counts from before. In other words, we repeatedly alternate 
between Stages I and II until victory is declared. 

Runtime Evaluation: the average runtime of this algorithm is difficult to compute, and 
remains open for now. However, simulations with certain parameters for the case of n = 
100 yield runtime between 3500 and 4000 days, or 9.5 to 11 years. 

3.6 Protocol III (Binary Tokens)

The basic idea behind the two stage counting protocol was that to speed 
things up, sometimes we should count in clumps rather than one-by-one. In the first 
stage, assistant counters counted one-by-one, and the second stage, the master counter 
counted the clumps collected by the assistant counters. 

This same protocol can be thought of in terms of exchanging “tokens” with variable point 
values. To make the analogy clear, imagine that all prisoners not assigned any counting 
roles start with a token worth one point. During Stage 1, these prisoners try to deposit 
their one-point tokens into the central room by turning on the bulb when they can, and 
assistant counters collect the tokens. Suppose assistant counters are ordered to count up 
to 10. Then in Stage 2, assistant counters exchange their collected tokens with 10-point 
tokens, and try to deposit these 10-point tokens into the room by turning on the bulb 
when they can. The master counter collects these bigger tokens. Thus, a lighted bulb 
represents a different number of points depending on what stage we are in, and the 
prisoners can escape more quickly by counting in terms of gradually higher denomination 
tokens. 

3.6.1 Strategy: The “binary tokens scheme” is a generalization of these ideas. The value 
of a lighted bulb is doubled from stage to stage, and all prisoners now have the same 
role, allowed both to deposit points and collect points. Proceeding formally, let n be the 
total number of prisoners, and suppose n is a power of 2. Let Pk be the number of points a 
lighted bulb is worth on day k. We will define it later, but for now, know that every Pk  is a 
nonnegative power of 2. 

All prisoners use the following instructions: 

• Keep an integer in your head; call it T . Initialize it to T = 1. 
• Let Tm denote the mth bit of T expressed in binary. 
• Upon entering the room on day k, where Pk = 2m for some m, go through four 
  steps:



 
(1) If the bulb is ON, set T := T + Pk−1 , and turn it OFF. 
(2) If T ≥ n, declare victory. 
(3) If Tm = 1, turn the bulb ON, and set T := T − Pk 
(4) Else, if Tm = 0, leave the bulb OFF and do nothing. 

Notice that Step 1 amounts to taking a token worth Pk-1 points left over from the previous 
day, and Step 2 amounts to depositing a token worth Pk points. In short, all prisoners will 
collect and deposit tokens whenever they may legally do so, where the value of tokens 
are universally dictated by a prespecified sequence Pk that is only a function of what day 
it is. Whenever someone accumulates 100 points worth of tokens, the game is over. 

It remains to specify what Pk should be. The sequence should start with a block of 
consecutive ones, since everyone starts with only one point. If this block is long enough, 
there will be many prisoners who have collect more than one point, and perhaps a 
subsequent block of twos would be effective. We choose the nondecreasing sequence 

{ Pk } = ( 1,1,...1
nln nnln lnn

,
2,2,...2

nln nnln lnn
,

4,4,...4
nln nnln lnn

,...,
n
2

, n
2

,... n
2

n lnnnln lnn

)

where T := log2n( n lnnn ln lnn ), the length of the finite sequence on the right-hand 
side. There are log2n stages, each lasting  n lnnn ln lnn days (rounded). In the k th 

stage, the bulb is worth 2k , where k indexes from 0 to (log2 n) − 1. 

Lastly, if victory has not been declared after T days, the prisoners will maintain the 
integers in their heads, and (Pk) restarts. That is, the full sequence ( Pk ) is T -periodic: 

 Pk := 2m where m := [
kmodT 

n lnnn ln lnn
]

3.6.2 Runtime Evaluation: Firstly let us work through a simple example.
Suppose we have n = 4 prisoners labeled A, B, C, and D. Stage 0, in which the 
bulb is always worth 1 point, then lasts for ⌈ n lnnn ln lnn ⌉ days. In the beginning, 
every prisoner starts with one point, and the bulb is OFF. We can represent this initial 
state by the table

                   Day 0
OFF 21 20

A 0 1

B 0 1

C 0 1

D 0 1

    Table 3.6.2.1 

where the bulb’s status is indicated in the upper left, and the integers being mentally 
maintained by each of the prisoners is listed in binary in the lower right. Let us play out 
the following sequence of visitations in Stage 0: A, B, C, B, A, . . . , D. 

On Day 1, A is chosen. Following the protocol, A will turn the bulb ON and decrement his 
number. The new state becomes: 



End of Day 1
OFF 21 20

A 0 0

B 0 1

C 0 1

D 0 1

    Table 3.6.2.2 

On Day 2, B is chosen. He sees the ON bulb, turns it off, and increments his count. He 
then checks if the zeroth bit of his newly incremented count is a 1, but it is not, so he 
does not activate the bulb. The new state is: 

End of Day 2
OFF 21 20

A 0 0

B 1 0

C 0 1

D 0 1

    Table 3.6.2.3

On Day 3, C is chosen. This leads to: 

End of Day 3 
OFF 21 20

A 0 0

B 1 0

C 0 0

D 0 1

    Table 3.6.2.4

On Day 4, suppose that B is chosen again. B sees the bulb, still worth 1 point, and turns it 
OFF. He then increments his count to 2 + 1 = 3, which is 112 in binary. Then he sees that 
the zeroth bit of his count so far is a 1, so he decrements his count back to 2, and turns 
the bulb ON again. So within Day 4, we have 

End of Day 4
OFF 21 20

A 0 0

B 1 1

C 0 0

D 0 1

    Table 3.6.2.5



To End of Day 4
OFF 21 20

A 0 0

B 1 0

C 0 0

D 0 1

    Table 3.6.2.6

which is the same state as the previous day. In short, choosing B again has no effect on 
the system.

Now suppose that on Day 5, A (or equivalently, C) is chosen. The consequent behavior 
will again be identical to that of B on Day 4. Any prisoner with a zeroed count will add 
and then immediately subtract out whatever the bulb is worth on that day to his count, 
resulting in no net state change. Thus, any prisoner whose count reaches zero can be 
thought of as being inactive for the rest of this stage. 

Hence, we see that in the remaining days of Stage 0, no net state change will occur 
unless D, the only person unchosen so far, is chosen, which would lead to the last state in 
Stage 0:

OFF 21 20

A 0 0

B 1 0

C 0 0

D 0 1

    Table 3.6.2.7
Change to

OFF 21 20

A 0 0

B 1 0

C 0 0

D 1 0

    Table 3.6.2.8

Notice all ones have been paired into groups of two. Stage 1 then proceeds much like 
Stage 0 did, except that now we increment/decrement starting with the left column of 
bits, and the number of active prisoners has been halved from four to two. It is easy to 
see where this binary pattern is going; at the start of Stage k, we should have combined 
all the 2k−1 tokens into 2k tokens, and there should be only n/ 2k active prisoners left. 

When does the protocol fail? Notice that if D is never chosen in Stage 0, he will never 
have another chance to deposit his 1-point token into the room since the value of the bulb 
only goes up in future stages. Thus, the only way the protocol could succeed in this cycle 
(going through all stages once) is if D is the victory-declaring prisoner which collects all n 
points in the end. In general though, if there are ever even just two prisoners who are not 
chosen in a stage, this entire cycle is destined to fail. So, we can draw the following 
conclusion: 



Up to a negligible fencepost error, the binary tokens protocol succeeds if and only if  
in each stage, every active prisoner is chosen at least once, where the number of 
active prisoners in Stage k is n/2k.

Thus in the k th stage, we collect n/ 2k tokens, and we have n lnnn ln lnn  days to do 
it. If P[ Fj

(k)] is the probability of failing to collect the jth token at the kth stage, where  
j ∈ {1, . . . , n/ 2k }, then 

P[ Fj
(k)] = 1− 1

n/2k

nln nnln lnn

 = e−2k


lnnln lnn as  n   ∞

 = elnnln lnn−2k

 = n lnn−2k

 ≤ 
1

n lnn

Then, by invoking the union bound, P[ F(k)] , the probability of the kth stage failing, is 

P[ F(k)]  ≤ ∑
j=1

n /2k

P [ Fj
(k)] ≤ 

1
2k

1
ln n

.

Let F denote the event that one cycle of the protocol fails. Since the protocol fails if and 
only if at least one of the log2 n stages fails, we can again invoke the union bound: 

P[F] ≤ ∑
k=0

log2 n−1

P [ F(k)] ≤ ∑
k=0

log2 n−1
1
2k

1
lnn

≤
2

ln n
.

Let S denote the event that first cycle of the protocol succeeds. Then

P[S] = 1 – P[F] ≥ 1- 
2

ln n
.

If the first cycle fails, then we can upper bound the probability that the second pass fails 
by the probability that the first cycle fails. This is true because the likelihood of 
successfully collecting all tokens at a given stage increases if some of these tokens were 
already collected in a previous cycle, thereby allowing for more opportunities for the 
uncollected tokens to be chosen. Thus, we can upper bound the expected number of 
cycles for the protocol by

1
P [S ]

≤ 

1

1− 2
ln n

  1 as   n  ∞  

Hence, since each cycle consists of log2n stages, each of length n ln nn ln lnn , 
the total expected number of days till the prisoners get out is upper bounded by 

(
1

1− 2
ln n

)(log2n)( n ln nn ln lnn )  O( n ln n2 )



4.Potential Better Strategy

Is there any better or vest solution to the problem? Some sort of hybrid algorithm is 
probably the best, to use good points of more than one strategy. Binary token strategy is 
certainly a good idea to start with, but something else may be better in the endgame. A 
hybrid given by B.Felgenhauer uses the binary token strategy to start with, but has a 
single counter strategy midway through. His sequence of block lengths (chosen by hand) 
has expected days of around 3949, and running optimization program on the variable for 
his strategy gives around 3890.

5. Weaker Assumption

In this section we will discuss if we can still get a solution after dropping one or more 
assumption made above.

5.1 Drop Assumption.1 
Now the protocol must be symmetric, which means each prisoner must follow the same 
instruction. 

Since there is only one role in whole procedure, binary token protocol works in this 
stronger condition, while single counter strategy doesn't work.

5.2 Drop Assumption.2  
Now the initial bulb state is indeterministic.

If we still hold the assumption that prisoners can count how many days have   elapsed, 
then as a trivial consequence of the assumption, we can have the prisoner who enters on 
the first day turn the bulb OFF . 

5.3 Drop Assumption.3
Now prisoners have no way to count how many days have elapsed.
In this situation, binary token protocol doesn't work since it depends on prisoners' 
knowledge of how many days have passed. On the other hand, single counter protocol 
works. 

5.3 Drop Assumption.2 & 3
If we have to drop both assumption, then we need to make some change to single counter 
strategy to solve the problem:

• If you are not the counter: 
– If the bulb is OFF, and you either have never turned the bulb ON before or 

have only turned the bulb once, then turn it ON.
– If the bulb is ON, do nothing. 

• If you are the counter: 
– If the bulb is OFF, do nothing.
– If the bulb is ON, turn it OFF, and set T=T+1.
– If T = 2n, announce that all prisoners have visited. 

Notice that when T= 2n, the number can consist of all 2*n times turning ON by prisoners, 
or 2n*-1 times and bulb's initial condition being ON. In this way, the strategy can solve 
the indeterministic problem even though no one can tell if the current day is the first day.



6. Variation of the problem

The interesting riddle has many variations. Each variation assumes all the conditions in 
the original problem, but with some aspects altered. Among those variations, the most 
worth thinking one is as followings:

Now the condition for every one to be freed is that every prisoner must correctly  
announce (at some time). In other words: every prisoner must be sure that all prisoners  
have been to the room. 

An amazing fact is that such protocol actually exists, just a variation of binary token 
strategy: each prisoner has one type of token for each prisoner who will have to 
announce. One cycle is given to each prisoner's attempts to collect the token destined to 
him, then after n of these second cycle is devoted to each prisoner, and so on. The 
expected run time of this strategy is in O( n2 long2n )

However we mentioned that the binary token strategy depends on the assumption that 
prisoners can count how many days have elapsed. What if the assumption doesn't exist?

The good news is that solution still exists. The bad news is that the solution may have the 
expected run time order equal to en . A brief description is as following: 

The light bulb is always worth one token. Any prisoner who has not announced does the 
following: If the lightbulb is on when he enters, then he collects the soul and turns the 
lightbulb off. If the lightbulb is off when he enters and he has one or more tokens, then he 
drops one token and turns the lightbulb on. Any prisoner who has already announced 
always drops any tokens that he has, and leaves any that are in the room. The average 
runtime can be shown by constructing an appropriate Markov chain and giving lower 
bounds for the chance that a given prisoner will announce in the next 200 days. Notice 
that when there is only one prisoner left to announce, this strategy reduces to Single 
Counter Strategy.

7. Conclusion

From the discussion above, we can find that each protocol is based on some important 
assumptions and doesn't depend on other assumption. Therefore, they have advantages 
on different aspect.
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