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1 Introduction

In a series of twenty papers spanning 1972-2004, Niel Roberson and P.D. Sey-
mour published a large body of work on graph theory including a proof of
Wagner’s Conjecture (now known as the Graph Minor Theorem).

This paper aims to give an overview of necessary graph theory background
and provide motivation for Robertson and Seymour’s work. We cover embed-
dings in general, but focus on the understanding them in detail on the plane
to build intuition for the general case considered in the Graph Minor Theorem.
We examine Kuratowski’s famous result characterizing planar graphs by a set of
two excluded minors which naturally led mathematicians to ask if such a finite
listing of forbidden minors is possible for other surfaces.

Wagner conjectured that any minor closed set of graphs can be characterized
by a finite set of excluded cycles. Embeddings on a surface are minor closed.
However, the projective plane is the only other surface besides the plane and the
sphere where these forbidden minors are known. For non orientable surfaces,
Archdeacon and Huneke established in 1980 that such a list of excluded minors
is finite. But it was not until Robertson and Seymour’s proved the Wagner
conjecture that the result was shown for orientable surfaces. [5]

We discuss another equivalent way to look at the Roberson–Seymour The-
orem in terms of well-quasi-orderings as well discuss some general concepts
behind the proof. We also cover some algorithmic applications of Robertson
and Seymour’s work.

2 Basics of Graphs and Embeddings

Here we cover the very basic definitions and concepts used throughout the paper.

2.1 Graphs

A finite simple graph G is defined by two finite sets V (G) and E(G), where
an element of V (G) is called a vertex and an element of E(G) is an edge. Each
edge is a two element subset of vertices. An edge e from vertex u to vertex v is
usually written as uv, and we say that e is incident with u and v.

A multigraph is similar to a simple graph, but loops uu and multiple edges
from u to v are allowed.

A vertex degree of v denoted by d(v) is the number of edges of G incident
with v, with loops counting twice. Intuitively, this is a count of how many ends
of edges meet at v. ∑

v∈V
d(v) = 2|E|

2.2 Connectivity

We define some necessary terms related to graph connectivity.
A walk in a graph G connecting vertices v0 and vn is a sequence
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2.3 Blocks 3

W = v0, e1, v1, e2, . . . , vl−1, el, vl where each edge ek joins the vertices vk−1 and
vk . A path from v0 to vn is just the edges(in order) of the walk W from v0 to
vn. A cycle is a path where v0 = vl.
A graph is connected if for any two vertices va and vb, there exists a walk
connecting them. If a graph is not connected it can be divided into maximal
connected components
A vertex cut of a graph G is a set of vertices S such that G − S becomes
disconnected. A graph G is k-connected if there is no vertex cut of G with
k − 1 of fewer vertices. Note that any connected graph is 1− connected

2.3 Blocks

A block is a maximal connected subgraph that has no cut vertex (is non sepa-
rable).
We would like to be able to decompose the graphG into subgraphsH1, H2, . . . ,Hi

such that each subgraph is 2-connected and G =
⋃i

n=1Hn. Since any two blocks
of G have at most one vertex in common, we can create such a decomposition
just by letting the subgraphs Hn be the blocks of G.

Here is an example of a block decomposition:

Figure 1: A decomposition into non separable subgraphs - a block decomposition

It is interesting to note that algorithmically, finding blocks is really easy. It
can be simply implemented as a Depth-First-Search.

2.4 S-Components

Let G be a connected graph with a vertex cut S. If X is one of the components
of G−S, then the subgraph H of G induced by X∪S is called an S-component
of G.

In the case of a 2-connected G with a vertex cut S = {x, y}, we sometimes
add the edge e = xy to each {x,y}-component. In that case these new graphs
are called marked S-components.

Theorem 1. Let G be a 2-connected graph and let S be a 2-vertex cut of G.
Then the marked S-components ofG are also 2-connected.
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2.5 Special Graphs 4

This property allows us continue dividing each marked {x, y}-component
into smaller marked components until each component does not have a two
vertex separating set, leaving us with 3-connected graphs. We call them the
3-connected components.

2.5 Special Graphs

We introduce and describe notation for some important special graphs.

2.5.1 Complete Graphs

A complete graph is a simple graph where any two vertices are connected
with an edge. We denote a complete graph with n vertices Kn. Here is K5, a
graph that will be very important to our discussion of planar embeddings:

Figure 2: A possible drawing of K5

2.5.2 Bipartite Graphs

A bipartite graph is a simple graph where the vertices can be partitioned into
two sets A and B such that every edge has one vertex end in A and one in B.
A complete bipartite graph has an edge from every vertex in A to every
vertex in B. We denote the complete bipartite graph with p vertices in A and q
vertices in B Kp,q. Here is an example of a complete bipartite graph K3,3 which
will be very important in our discussion of planarity.

Figure 3: A possible drawing of K3,3
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2.5.3 Trees

A tree is a connected graph with no cycles(acyclic). Here are a couple easy
theorems about trees to build intuition:

Theorem 2. In a tree, any two vertices are connected by exactly one path.

Proof. Fix two vertices: v1 and v2. We already know that there exists a path
from v1 and v2. Suppose there exist two paths p1 and p2 and prove a contra-
diction. We can create the path p′2 from p2 by reversing the edges of p2 . We
get that p′2 is a path from v2 to v1. So we can glue the paths the paths p1 and
p′2. We get P = p1p

′
2 where P is a path from v1 to v1 and is therefore a cycle.

We get that our tree actually contains the cycle P . Contradiction.

Theorem 3. For any tree Te(T ) = v(T )− 1

Proof. We prove this by induction on the number of vertices. If v(T ) = 1,
e(T ) = 0 (otherwise T would have a cycle). If v(T ) ≥ 2 find a vertex v of
degree one (a leaf). Remove that v and the only edge e attached to v to create
T ′. v(T ′) = v(T ) − 1, e(T ′) = e(T ′) − 1, which combined with the inductive
hypothesis gives us Te(T ) = v(T )− 1.

2.6 Embeddings

Intuitively, embedding a graph onto a surface means drawing the graph on the
surface such that no edges cross. More formally, an embedding is a represen-
tation of graph G on a surface S where vertices are assigned to be points on
S and edges are simple arcs connecting the points of the vertices where no two
arcs may cross.

We go into detail about embeddings in the plane in the next section.
On the other hand, talking about embeddings in R3 is not interesting, as

every graph can be embedded in R3. There are many ways for creating such
an embedding. For example, any graph can be drawn with straight line edges
if the vertices are placed onto R3 such that no four vertices are coplanar. Here
are a couple ways to do so:

1. Place vertices on the curve {(sin t, cos t, t)|0 ≤ t ≤ π/2} [6]

2. Place the ith vertex at (i, i2, i3)
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2.7 Subdivisions 6

2.7 Subdivisions

A subdivision replaces and edge e joining v and w by a new vertex u and edges
vu and uw. Two graphs are homeomorphic if there is some graph from which
each can be obtained by a sequence of subdivisions. Bellow is an example of
three homeomorphic graphs.

Figure 4: Three homeomorphic graphs

2.8 Minors and Contractions

A minor of a graph G is a smaller graph H that can be created from G by a
series of edge contractions and deletions.

• An edge deletion simply creates a new graph G′ where V (G′) = V (G)
but E(G′) = E(G)− e where e is the deleted edge.

• A contraction of an edge uv replaces the vertices u and v with a new
vertex w with an edge wx in G′ for every edge ux and vx in G

Note: a minor is independent of the order of operations performed and
therefore can simply be characterized by a list of edge contractions and deletions.

3 Planar Graphs

Here we discuss planar graphs: graphs that can be embedded onto the plane.

3.1 Definitions

A region of a plane embedded graph G is a maximal (arcwise) connected set
of points on the plane but not in the embedding of G (in the complement of G
relative to the plane). Harris, Hirst and Mossinghoff give a great visual intuition
in their Combinatorics and Graph Theory: If we imagine a cookie cutter in the
shape of an embedding of G, then the cookies are the regions [4]. One thing
to note: each plane graph has exactly one unbounded region( a huge cookie! ),
usually called the outer face or exterior face. See bellow for a graph with its
faces labeled. F1 is the unbounded face.

We define b(R) to be the number of edges bounding the region R. In the
graph bellow, each region R has b(R) = 4
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3.2 The Jordan Curve Theorem 7

3.2 The Jordan Curve Theorem

To talk about regions, we need some basic knowledge of topology. The most
important result for graph theory is The Jordan Curve Theorem.

Theorem 4 (The Jordan Curve Theorem). Any simple closed curve C in the
plane partitions the plane into exactly two disjoint arcwise connected sets. Both
of these regions have C as the boundary.

This intuitively very obvious result is not obvious to anybody who wants to
be rigorous about topology. I omit the proof for the sake of brevity and focus.
However, readers interested in a rigorous topological proof can refer to Graphs
on Surfaces by Mohar and Thomassen.

3.3 Euler’s Formula and Consequences

Euler discovered a relationship between the counts of vertices, edges and regions
of embedded graphs. Euler actually proved a more general relationship, but I
present the formula for the plane.

Theorem 5. If a planar embedding of a connected graph G in the plane has n
verices, m edges and r regions, then n−m+ r = 2

Proof. We induct on the number of edges q.
If q = 0, then G must be K1 with n = 1 and r = 1 since the embedding of

G only has the outer face. So Eurler’s formula holds for q = 0 .
Assume the formula is true for graphs with fewer than q edges, and G has q

edges. There are two cases:
Case 1: Suppose G is a tree. Then r = 1, and we know that for trees

q = n− 1. We get n− q + r = n− (n− 1) + 1 = 2.
Case 2: If G is not a tree, but is connected it has a cycle. Pick an edge e

that is part of a cycle. Let H be G with e removed. H is still connected and has
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3.3 Euler’s Formula and Consequences 8

one fewer edge (e′ = e− 1), so we can use the inductive hypothesis. Since e was
part of a cycle in G it was separating two difference faces. So with e removed
the two faces coalesce into just one and H has one fewer face (r′ = r − 1). The
number of vertices stayed the same. We have n− q+ r = n− (q− 1) + (r− 1) =
n′ − q′ + r′ = 2

There are many other variants of this proof. However, many proofs come
down to either deleting or contracting an edge in a cycle. Like we have seen,
deleting an edge decreases the number of faces and edges by one. Contracting
an edge decreases the number of vertices and edges by one, keeping the same
number of faces.

For a more topologically rigorous proof of Euler’s Formula, I again refer the
reader to Mohar and Thomassen.

From Euler’s formula we can create a very easy way to classify some graphs
as non planar.

Theorem 6. A planar graph G with n ≥ 3 vertices has q ≤ 3(n− 2) edges.

Proof. We prove this for connected graphs. If a graph H is disconnected, add
edges until it is connected, and if the inequality holds for the connected H ′ with
more edges it certainly does for H.

We try relate q and r. Consider the sum

C =
∑
R

b(R)

over all the regions of G. Since every edge of G can be at the boundary of at
most two regions, C ≤ 2q. Since G is connected, and has more than 3 vertices,
each face must have at least three edges bounding each region, so C ≥ 3r. We
get 3r ≤ 2q which combined with Euler’s formula gives us q ≤ 3n− 6

Corollary 7. The complete graph of five vertices K5 is not planar.

Theorem 8. A planar graph G with n ≥ 3 vertices has q ≤ 2(n− 2) edges if G
is bipartite.

Proof. This proof is very similar to the previous one, except bipartite graphs
cannot contain a cycle with fewer than 4 edges. Therefore each region is bounded
by at least 4 edges and C ≥ 4r. We get

4r ≤ 2q =⇒ 4(2 + q − n) ≤ 2q =⇒ q ≤ 2(n− 2)

Corollary 9. The full bipartite graph K3,3 is not planar.
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3.4 Kuratowski’s Theorem 9

3.4 Kuratowski’s Theorem

From the two previous corollaries we know that K5 and K3,3 cannot be em-
bedded on the plane. Are there any other graphs that cannot be embedded?
Yes.

Proposition 10. If a graph G has a subgraph that is a subdivision of K5orK3,3,
then G is non planar.

Proof. Every subgraph of a planar graph is planar and subdividing edges does
not effect planarity (an embedding of G can be used to get an embedding of a
subdivision of G, and vice versa).

So we found a bunch more graphs that cannot be embedded in the plane -
those that contain a subdivision of K5orK3,3 (a Kuratowski subdivision). Are
there more? Let us consider minors instead of subgraphs.

Proposition 11. If a graph G contains a minor of K5orK3,3, then G is non
planar.

Proof. Minors of planar graphs are minors, as an embedding for a minor can be
created from an embedding of the original graph.

So did we just find a bunch more non planar graphs? Not really. If graph
F is homeomorphism of a subgraph of G, then F is also a minor of G. We
can obtain F as a minor, first by deleting edges not in the subgraph, and then
contracting edges that were subdivided. Conversely, if G has K5orK3,3 as a
minor, it also has a Kuratowski subdivision.

We now know of many graphs that are not planar: those that have K5orK3,3

as a minor or equivalently, those that contain a Kuratowski subdivision. Are
there any more? No. This is the statement of Kuratowski’s and Wagner’s
Theorems.

Theorem 12 (Kuratowski’s Theorem). A graph is planar if and only if it does
not contain a subgraph homeomorphic to K5 or K3,3.

Or equivalently.

Theorem 13 (Wagner’s Theorem). A graph is planar if and only if it does not
contain K5 or K3,3 as a minor.

The proofs I have seen of these theorems have been similar, with slightly
different details depending on whether Wagner’s or Kuratowski’s Theorem is
proved. However (at least the ones I have seen) generally follow the basic
outline bellow.

1. Prove that G is planar if and only if each block of G is planar.

2. Prove that G is planar if and only if each of the 3-connected components
is planar.
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3. Prove that for every simple 3-connected graph other than K4 has an edge
whose contraction results n a 3-connected graph.

4. Induct on nodes and reduce the graph by contracting an edge. Assume the
reduced graph is planar, and prove that if the original graph is non planar
then un-contracting that edge created either K3,3 or K5 as a minor.

4 Overview of the Robertson-Seymour Theorem

There are two ways of formulating the main result of Roberson and Seymour’s
work. One concerns ideas similar to those of ”bad” minors of Wagner’s Theorem.
The other formulates the result in terms of order theory.

4.1 Excluded Minors

To say that a class of graphs K is minor-closed means that for every graph H
in K all the minors of H are in K as well. The idea is to look at a family of
graphs (M1,M2, . . .) such that every graph G not in K has one of the graphs
Mi as a minor. This family is known as the excluded minors of K. Obviously
such a list exists - just list all the graphs not in K. However Wagner conjectured
and Roberson–Seymour proved that for any minor closed class, there exists a
finite list of excluded minors. Furthermore, the minimal list of excluded minors
is unique. [5]

4.2 Well-quasi-ordering

A reflexive, transitive relation ≤ on a set X is a well-quasi-order (wqo) if

1. there is no infinite list of elements x1, x2, . . . with xi ∈ X such that x1 ≥
x2 ≥ x3 . . . (an infinite descending chain), and

2. there is no infinite set of pairwise incomparable elements (an infinite an-
tichain)

Equivalently, a set X is wqo if given any sequence x1, x2, . . . of elements of
X, there exists an infinite subsequence xi1 , xi2 , . . . where xi1 ≤ xi2 ≤ . . .

We can narrow our discussion to graphs. If T is an infinite set of graphs,
then it is a consequence of Ramsey’s theorem for infinite graphs that at least
one of the following happens [1]:

• T contains an infinite descending chain t1 > t2 > t3 . . .

• T contains an infinite antichain

• T contains an infinite ascending chain t1 < t2 < t3 . . .
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Now consider the minor relation (the proper minor relation in case of <).
There cannot be an infinite descending chain of proper minors. Therefore an
infinite set of graphs either contains an antichain or an infinite ascending chain.
Robertson and Seymour proved that there cannot be an infinite antichain under
the proper minor relationship.

Note, that this immediately implies that the set of excluded minors must be
finite. Let S be the set of minor minimal graphs not in K. Since no two elements
of S can be a minor of each other, S is an antichain and therefore finite.

5 Some Details of the Graph Minor Theorem

Robertson and Seymour were able to prove that the set of graphs is wqo un-
der the minor relationship. Restricting our graphs to trees, we have a simpler
theorem proved by Kruskal in 1960.

Theorem 14. The set of trees is wqo under topological containment

Here are the two main theorems that allowed Robertson and Seymour to
prove the general case.

Theorem 15. For each positive integer k, the proper minor relation is a well-
quasi-order on the set of graphs having tree-width at most k.

and

Theorem 16. For each positive integer k, there is an integer f(k) such that
every graph with tree-width of at least f(k) has a k-grid minor.

The first theorem shows that if we are to find a infinite antichain, the ele-
ments of that chain must have unbounded tree width. That allows us to conclude
from the second theorem that the elements have arbitrarily large grids. This
structure forces certain further restrictions on the elements if they are to be
an antichain. Eventually by forcing more an more structure on the elements,
Robertson and Seymour showed that two of the elements in the antichain are
actually in a minor relationship. Leading to a contradiction. [1]

6 Applications to Algorithms

6.1 Testing for a Minor Closed Property

Not only did Robertson and Seymour prove that the list of excluded minors is
finite for any minor closed property, but they also provided an algorithm for
testing if a fixed graph H is a minor of any input graph G. The running time
of this algorithm is O(n3) (where n is the size of G). Which means that testing
if G has a minor closed property is also polynomial time on the input. All that
is necessary is to check if any of the finitely many excluded minors are a minor
of G.
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Unfortunately, although this is a really cool result theoretically, it only proves
an existence of an algorithm and doesn’t actually provide one. The catch is that
even though we know the list of excluded minors is finite, we rarely know what
that list contains. Even for properties where we do know the excluded minors
(the plane, sphere, projective plane) the algorithm is quite inefficient. The
inefficiencies lie in the huge constant factors, as the constant factor in minor
testing grows very rapidly with size of the minor H. The good news is there
exists a planarity testing algorithm that runs in O(n) thanks to Hopcroft and
Tarjan(1974) [3].

6.2 Tree Decompositions and Tree Width

We discuss tree decompositions and tree width, which are very important in
Robertson and Seymour’s work but had not been mentioned previously. These
concepts are also applicable to making fast algorithms.

A tree decomposition of a graph G is a pair (T,X) where T is a tree
indexing a family of subsets of V (G). Each node vt ∈ V (T ) has a corresponding
subset Xt of the original graph V (G) with the following properties:

1. For every edge {u, v} of G, there exists a vertex t of T such that u, v ∈ Xt

2. For every pair y, z of vertices of T , if w is any vertex in the path between
y and z in T , then Xy ∩Xz ⊆ Xw

The width of a decomposition is max{|Xi|− 1|i ∈ V (T )}. The tree width
of a graph G is the minimal k such that a tree decomposition of width k exists.

There are many graph problems that are believed to be not solvable in
polynomial time based on the size of the input. Examples of such problems
include:

• Vertex Coloring: Partitioning the vertices of a graph G into a minimum
number of independent sets such that no edge joins two vertices in the
same set.

• Traveling Salesman Problem: Finding the least cost cycle (where
costs are assigned to edges) that visits every node exactly one (Hamilto-
nian Cycle).

• Vertex Cover: Find the smallest subset S of V (G) such that every edge
of G has at least one end in S.

However, when we restrict our input to graphs with a bound tree width,
many of these hard problems (all of the examples) become solvable in polynomial
time. See Algorithmic Implications of the Graph Minor Theorem for details on
how [2].
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7 Conclusions

Roberson and Seymour published a monumental body of work that contains
many theoretically and algorithmically useful results, the vast majority of which
were not covered here. However, hopefully this paper was able to provide enough
necessary background for an excited reader to feel comfortable starting to ex-
plore their work. Anybody interested in graph theory will likely benefit from
understanding more of their work, and there is certainly enough breadth to keep
excited along with plenty of depth for anybody interested in details.
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