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Introduction

Determining the linear independence of a set of functions is an integral part of linear
analysis as well as in finding solutions to differential equations. In Wronskians and
Linear Independence, Bostan and Dumas [2] discuss the Wronskian matrix and the
relation between its determinant and identifying linear dependence of functions. In
particular, the Wronskian determinant for a family of functions will be identically zero if
the functions are linearly dependent. Although this is a known result from linear
analysis, Bostan and Dumas identify a common source of ambiguity as well as provide a
new proof of the aforementioned fact.

Terminology

Definition. The Wronskian of a family of n functions that are (n− 1) times
differentiable is defined as the determinant of the matrix of derivatives (Wronskian
matrix).
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Definition. The Vandermonde determinant V (d1, . . . , dn) is given by

V (d1, . . . , dn) =
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Definition. The falling factorial d(d− 1) · · · (d− k + 1) is denoted by (d)k.

Definition. A field K is an algebraic structure with addition, subtraction,
multiplication and division defined and satisfying the group axioms.

Definition. The characteristic of a field is the fewest number of times the multiplicative
identity must be summed to yield the additive identity. If the multiplicative identity
never sums to the additive identity, the characteristic is said to be zero.
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The Wronskian

It is not uncommon to see the term “Wronskian” used to refer both to the Wronskian
matrix itself as well as its determinant; however, sensible nomenclature would have the
term “Wronskian” refer to the determinant, and this is how we will use the term, as
noted above. Furthermore, although it can be the case that linearly independent
functions may have a zero Wronskian (the example given being the real functions x2 and
x|x|), if we restrict ourselves to analytic functions it does turn out that a zero
Wronskian implies linear dependence. This is the hypothesis of theorem 1.

Theorem 1. A finite family of linearly independent analytic functions has a nonzero
Wronskian.

A typical proof is that given by Anton [1, Chap. 5, pp. 246], wherein it is shown
directly that a family of linearly dependent functions has an identically zero Wronskian.
However, Bostan and Dumas elect to defer the proof of theorem 1 in favor of an
extension from abstract algebra,

Theorem 2. Le K be a field of characteristic zero. A finite family of formal power
series in K[[x]], or rational functions in K(x), has a zero Wronskian only if it is linearly
dependent.

The following three lemmas are used in the proof of Theorem 2.

Lemma 1. The Wronskian of the monomials a1x
d1 , . . . , anx

dn is equivalent to

C(d1, . . . , dn)xd1+···+dn−(n
2)

n∏
i=1

ai.

Although lemma 1 is never invoked directly, its result provides a nonzero matrix

D =

∣∣∣∣∣∣∣∣∣
1 · · · 1
d1 · · · dn
...

...
...

(d1)(n−1) · · · (dn)(n−1)

∣∣∣∣∣∣∣∣∣
which is useful in the proof of lemma 3.

Lemma 2. Let K be a field and let f1, . . . , fn be a family of power series in K[[x]] which
are linearly independent over K. There exists an invertible n× n matrix A with entries
in K such that the power series g1, . . . , gn defined by

[g1 · · · gn] = [f1 · · · fn] · A

are all nonzero and have mutually distinct orders. As a consequence, the following
equality holds

W (g1, · · · , gn) = W (f1, · · · , fn) · det(A)

Lemma two is proven by observing that since two series f1 and f2 are linearly
independent, it is possible to find a linear combination such that k1f1 + k2f2 results in a
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series with strictly greater order than f1. In the case of more than two functions the
argument is repeated to show existence of the matrix A.

Lemma 3. Let K be a field of characteristic zero. If the nonzero series g1, . . . , gn in
K[[x]] have mutually distinct orders, then their Wronskian W (g1, . . . , gn) is nonzero.

Lemma three is shown by noting that the Vandermonde determinant V (d1, . . . , dn) is
nonzero if and only if the constituent di’s are mutually distinct. The entries in the
Wronskian W (g1, . . . , gn) can now be written as wi,j × (1 + xri,j) for some series ri,j in
K[[x]], where wi,j is the (i,j)th entry in the original Wronskian. We can replace wi,j in
the Wronskian with the new expression wi,j × (1 + xri,j) and the matrix D in lemma 1
can have its entries replaced by (dj)i−1 × (1 + xri,j), which yields a nonzero determinant.

From this, we can prove Theorem 2.

Proof of Theorem 2. Let f1, . . . , fn be linearly independent power series in K[[x]]. Under

this assumption, lemma 2 allows us to find series gk =
∞∑
n=1

anz
n with mutually distinct

orders such that the Wronskians of both the original functions W (f1, . . . , fn) and the
power series W (g1, . . . , gn) are equal up to a nonzero factor. Following that, lemma 3
gives us W (g1, . . . , gn) 6= 0, and since W (g1, . . . , gn) = K ·W (f1, · · · , fn) we immediately
obtain the result W (f1, . . . , fn) 6= 0. In the second case of rational functions f1, . . . , fn,
the above result for power series extends to this case via a Laurent expansion

fk(z) =
∞∑

n=−∞
an(z − z0)

n. W (f1, · · · , fn) 6= 0 in both cases. Thus, a finite collection of

analytic or rational functions has a zero Wronskian only in the case that the functions
are linearly dependendent.

Consequence

When finding a solution to a differential equation, it is not uncommon to generate
multiple solutions. Since the Wronskian allows us to determine linear independence in a
reasonably efficient way, it is of great utility in ascertaining whether extraneous
solutions to ordinary differential equations are linearly dependent. Since the Wronskian
is typically nonconstant, locating the zeros of the function that results from evaluating
the Wronskian will identify areas near which the family of functions are linearly
dependent; the case where W ≡ 0 naturally implies that the family of functions is
linearly dependent everywhere.

Conclusion

A new and unique proof of the fact that a nonzero Wronskian implies linear
independence was provided for families of analytic functions. Although this was not a
new result, the proof given by Bostan and Dumas is noted as being particularly elegant
and brief. In addition, due to its utility in the area of differential equations, the new
proof provides an accessible route to understanding why the Wronskian is used to
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determine linear dependence rather than some other method.
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