The Evolution of Markov Chain

Monte Carlo Methods

Jie Ji

Math 336 Term Paper

Contents

Introduction

Evolution of Markov Chian Monte Carlo(MCMC) Methods
2.1 Monte Carlo Methods

2.2 Markov Chains

2.3 Statistical Mechanics and the Boltzmann

Distribution

2.4 The Metropolis Algorithm

Matlab Simulation of the MCMC
Introduction

This algorithm of Markov Chian Monte Carlo Methods (MCMC) is actually a collection of related algorithms—Metropolis-Hastings, simulated annealing, and Gibbs sampling—together known as MCMC methods. The original MCMC method, the Metropolis algorithm, arose in physics, and now its most current variants are central to computational statistics. Along the way from physics to statistics the algorithm appeared in—and was transformed by—applied mathematics and computer science. Perhaps no other algorithm has been used in such a range of areas. Even before its wondrous utility had been revealed, its discovers knew they had found.

This paper contains the summary of the original article "The Evolution of Markov Chian Monte Carlo Methods" by Matthew Richey published in The American Mathematical Monthly, Vol. 117, No.5, pp. 383-413, as well as the application of MCMC in finance. Finally I will provide a Matlab model for the MCMC simulation.

Evolution of the MCMC Methods

2.1 The Monte Carlo Methods.

The original Monte Carlo methods was invented shortly after World War II. At that time, much of work was motivated by the intense focus on developing nuclear weapons. Hence, one particularly difficult problem was to estimate the behavior of large collections of atomic particles. Before the late 1940s, no device existed that could quickly and accurately carry out large scale random simulations. In 1947, after the invention of computers, von Neumann and others were working on methods to estimate neutron diffusion and multiplication rates in fission devices. Von Neumann proposed a simple plan: create a relatively large number of "virtual" neutrons and use the computer to randomly simulate their evolution through the fissionable material. When finished, count the number of neutrons remaining to estimate the desired rates. From this point forward, randomized simulation -- soon to be called Monte Carlo methods, were an important technique in physics.

In addition to sampling from the uniform distribution, there soon emerged ways to sample from other probability distributions. For many of the standard distributions, mathematical transformations of the uniform distribution sufficed. The MCMC methods could overcome the limitation of acceptance-rejection sampling. The key was the use of a Markov chian.

2.2. Markov Chains.

Definition:

Give a finite state(configuration) space S = {1, 2, . . . , N}, a Markov chain is a stochastic process defined by a sequence of random variables, Xi ∈ S, for i = 1, 2, . . . such that:

Prob(Xk+1 = xk+1 | X1 = x1, . . . , Xk = xk) = Prob(Xk+1 = xk+1 | Xk = xk).

In other words, the probaility of being in a particular state at the (k+1)st step only depends on the state at the kth step. We only consider Markov chains for wich this dependence is independent of k (that is, time-homogeneous Markov chains). This gives an N x N transition matrix P = (pij) defined by

Pij = Prob(Xk+1 = j | Xk = i).

Note that for i = 1, 2, . . . , N,

[image: image1.jpg]

The (i, j) - entry of the Kth power of P gives the probability of transitioning from state i to state j in K steps.

Two desirable properties of a Markov chain are:

It is irreducible: for all states i and j, there exists K such that (Pk)i,j ≠ 0.

It is aperiodic: for all states i and j, gcd{K : (Pk)i,j ＞ 0} = 1

An irreducible, aperiodic Markov chain must have a unique distribution π = (π1, π2,

. . . , πN) on the state space S (πi = the probability of state i) with the property that

π = πP.
We say that the Markov chain is stable on the distribution π, or that π is the stable

distribution for the Markov chain.

MCMC methods depend on the observation:

If π is the stable distribution for an irreducible, aperiodic Markov chain, then we can use the Markov chain to sample from π.

To obtain a sample, select s1 ∈ S arbitrarily. Then for any k > 1, if sk−1 = i , select sk = j with probability pi j . The resulting sequence s1, s2, . . . has the property that as

M →∞,

[image: image2.jpg]|tk : k < M and s, = j}|
phidin it b CR
M

with probability one.

2.3 Statistical Mechanics and the Boltzmann Distribution

The Metropolis algorithm was motivated by the desire to discern properties of the Boltzmann distribution from statistical mechanics, the branch of physics concerned with the average behavior of large systems of interacting particles. Let us briefly develop some of the fundamental ideas behind the Boltzmann distribution.

A state of the particles is described by a configuration ω taken from the configuration space Ω. The configuration space can be infinite or finite, continuous or discrete. For example, we might start with N interacting particles, each described by its position and velocity in three-dimensional space. In this case Ω is an infinite, continuous subset of R6N . Alternatively, Ω could be described by taking a bounded subset, , of the integer lattice in the plane and to each site attaching a value, say ±1. The value at a site might indicate the presence of a particle there, or it might indicate an orientation (or “spin”) of a particle at the site. If | ˄ | = N, then the configuration space consists of all 2N possible assignments of values to sites in ˄ .

The physics of a configuration space Ω is described by an energy function E : Ω → R+. We say that E(ω) is the energy of a configuration ω. For the continuous example above, energy could reflect the sum of gravitational potential energies. For the discrete example, the energy could reflect the total influence that neighboring particles exert on each other, as in the Ising model, which we will look at shortly.

A fundamental principle of statistical physics is that Nature seeks low-energy configurations. The random organization of molecules in a room is governed by this principle. Rarely observed configurations (e.g., all of the molecules gathering in a corner of the room) have high energies and hence very low probabilities. Common configurations (e.g., molecules isotropically distributed throughout the room) have low energies and much higher probabilities, high enough so that they are essentially the only configurations ever observed.

For a system at equilibrium, the relative frequency of a configuration ω is given by its Boltzmann weight,

e -E(ω)/kT,

where T is the temperature and k is the Boltzmann's constant.

For any ω ∈ Ω, its Boltzmann probability , Boltz(ω), is

Boltz(ω) = e -E(ω)/kT / Z.

The denominator

Z = ∑ω'∈ Ω e -E(ω')/kT

is called the partition function. In any realistic setting, the partition function is analytically and computationally intractable. This intractability single-handedly accounts for the dearth of analytic, closed-form results in statistical mechanics.

2.4. The Metropolis Algorithm.

The genius of the Metropolis algorithm is that it creates an easily computed Markov chain which is stable on the Boltzmann distribution. Using this Markov chain, a sample from the Boltzmann distribution is easily obtained. The construction requires only the Boltzmann weights , not the full probabilities, hence avoiding the dreaded partition function. To appreciate the motivation for the Metropolis algorithm, let’s recreateMetropolis et al.’s argument from their 1953 paper.

The setting for the Metropolis algorithm includes a large but finite configuration

space Ω, an energy function E, and a fixed temperature T. Let ˜Ω be any sample of

configurations selected with replacement from Ω. It is possible, even desirable, to allow ˜Ω to be larger than Ω. By adding and removing configurations, we want to modify ˜Ω so that it becomes (approximately) a sample from the Boltzmann distribution. Suppose |˜Ω | = ˜N and let Nω denote the number of occurrences of ω in ˜ Ω. To say that the sample perfectly reflects the Boltzmann distribution means

[image: image3.jpg]No
—

¢ E@IAT
N

Or equivalently, for any two configurations ω and ω' ,

[image: image4.jpg]Ny, e E@IkT
N, = e E@/kT

Steps for using Metropolis algorithm.:

Step 1. Select ω' according to the proposal transition.

Step 2A. If E(ω') ≤ E(ω), or equivalently, Boltz(ω') ≥ Boltz(ω), let ω* = ω'. In other words, always move to lower energy(higher probability) configuration.

Step 2B. If E(ω') > E(ω), or equivalently, Boltz(ω') <Boltz(ω), let ω* = ω' with probability

[image: image5.jpg]Boltiz(@) _ _arpr
Boltz(w)

Otherwise, ω* = ω.

Several observations are in order:

• This process defines an irreducible, aperiodic Markov chain on the configuration

 space Ω.

• The ratio is crucial to the computational utility of the Metropolis algorithm in

 that it avoids the intractable partition function.

• The steps in the chain are easily computable, or at least as easily computable as the

 proposal transition, E(ω), and, most importantly, ΔE = E(ω) − E(ω). In many

 settings, ΔE is extremely simple to compute; often it is independent of |Ω|.

• The Markov chain defined by the Metropolis algorithm can be implement without
knowing the entire transition matrix

MCMC in Matlab

Consider the following example:

Use the above algorithm to generate random variables from a standard

cauchy distribution, f(x) =1/π (1 + x2) , -∞ < x < ∞

Now I will let Matlab run the following code to do the MCMC simulation for the function f(x)
% Reference: Matinez and Matinez, 2008, Computational Statistics with

MATLAB

% Generate a candidate from the proposal distribution (normal in this

% case). This will be a normal with mean given by the previous

% value inthe chain and standard deviation of �sig�

% Set up an inline function to evaluate the Cauchy.

% Note that in both of the functions, the constants are canciled

strg=�1./(1+x.^2)�; cauchy=inline(strg,�x�);

% Set up an inline function to evaluate the Normal pdf

strg=�1/sig*exp(-0.5*((x-mu)/sig).^2)�; norm=inline(strg,�x�,�mu�,�sig�);

% Generate 10000 samples in

the chain.

n=10000; sig=2;

x=zeros(1,n);

%generate starting point

x(1)=randn(1);

for i=2:n

y=x(i-1)+sig*randn(1);

u=rand(1);

alpha=min([1,cauchy(y)*norm...

(x(i-1),y,sig)/(cauchy(x(i-1))...

*norm(y,x(i-1),sig))]);

if u<=alpha:

x(i)=y;

else:

x(i)=x(i-1);

end

end

%plot the histogram with �firrst

500 points discarded

figure; hold on

histfit(x(501:n));

xx=-10:0.5:10;

plot(xx, (n-500).*...

1./(pi.*(1+xx.^2)),�-b�);

hold off

�

�

�

�

�

