Math 336 Sample Problems

One notebook sized page of notes (both sides) will be allowed on the test. The test will be comprehensive. The final exam is at 8:30 am, Monday, June 7, in the regular classroom.

- 1. Gamelin IX.1, 1,2.
- 2. Let $f(z) = \frac{z-a}{1-\bar{a}z}$, where |a| < 1. Let $D = \{z : |z| < 1\}$. Prove that

(a)
$$\frac{1}{\pi} \int_{D} |f'(z)|^2 dx dy = 1.$$

(b)
$$\frac{1}{\pi} \int_{D} |f'(z)| dx dy = \frac{1 - |a|^2}{|a|^2} \log \left(\frac{1}{1 - |a|^2} \right).$$

3. Let u(x,y), v(x,y) be continuously differentiable as functions of (x,y) in a domain Ω . Let f(z) = u(z) + iv(z). Suppose that for every $z_0 \in \Omega$ there is an r_0 (depending on z_0) such that

$$\int_{|z-z_0|=r} f(z)dz = 0,$$

for all r with $r < r_0$. Prove that f is analytic in Ω . Hint: Show that f satisfies the Cauchy-Riemann equations in Ω .

4. Prove that all conformal maps from the upper half plane to the unit disk have the form

$$\alpha \frac{z-\beta}{z-\bar{\beta}},$$

where $|\alpha| = 1$, $Im(\beta) > 0$.

- 5. Let $D_2 = \{z : |z| < 2\}$ and $I = \{x \in \mathbf{R} : -1 \le x \le 1\}$. Find a bounded harmonic function u, defined in $D_2 I$ such that u does not extend to a harmonic function defined in all of D_2 .
- 6. Find a conformal map from the region between the two lines y = x and y = x + 2 to the upper half plane, which sends 0 to 0.

p

7. Find a function, h(x, y), harmonic in $\{x > 0, y > 0\}$, such that

$$h(x,y) = \begin{cases} 0 & \text{if } 0 < x < 2, y = 0, \\ 1 & \text{if } x > 2, y = 0, \\ 2 & \text{if } x = 0, y > 0 \end{cases}$$

- 8. Suppose that u is harmonic on all of \mathbb{C} and $u \geq 0$. Prove that u is constant.
- 9. Suppose f is analytic on $H=\{z=x+iy:y>0\}$ and suppose $|f(z)|\leq 1$ on H and f(i)=0. Prove

$$|f(z)| \le \left| \frac{z-i}{z+i} \right|.$$

10. Let u(z) be harmonic in $\{z: 0<|z|<1\}$. Let $P=\int_{|z|=r}\frac{\partial u}{\partial n}ds$, where 0< r<1. Show that P does not depend on r. Prove that

$$u(z) = \frac{P}{2\pi} \log|z| + \operatorname{Re}(f(z))$$

where f is analytic in $\{z: 0 < |z| < 1\}$.

11. Prove that if |z| < 1

$$\lim_{n \to \infty} \prod_{k=0}^{k=n} (1 + z^{2^k}) = \frac{1}{1-z}$$

12. There may be homework problems or example problems from the text on the final. Don't forget previous sample problems.