Math 336 Sample Problems

One notebook sized page of notes will be allowed on the test. The test will cover up to \$VIII.2 in the text (excluding those sections for which there was no homework).

- 1. p. 158, # 13.
- 2. Using Rouché's theorem, show that $z^5 + 5z^3 + z 2$ has three roots in the set $\{z : |z| < 1\}$.
- 3. Suppose f(z) is an entire function and $|f(z)| < 1 + |z|^{1/2}$. Prove that f is constant.
- 4. Let $D = \{z : |z| < 1\}$. Suppose f is analytic on an open set that includes the closure of D and suppose |f(z)| < 1 if |z| = 1. Prove that there is a unique $\zeta \in D$ such that $f(\zeta) = \zeta$.
- 5. Let u and v be harmonic on an open connected set W. Suppose that u(z)v(z) = 0 on an open subset of W. Prove that either u or v is identically 0 on W.
- 6. Let Ω be a bounded connected open set. Suppose $0 \in \Omega$ and that f is an analytic function on Ω such that if $z \in \Omega$, $f(z) \in \Omega$. Suppose also that f(0) = 0, f'(0) = 1. Prove that f(z) = z. Hint: use Cauchy's inequalities on the functions obtained by composing f with itself ktimes.
- 7. Let f be analytic on $D = \{|z| < 1\}$. Suppose f is 1 1 on $D \{0\}$. Prove that f is 1 - 1 on D.

- 8. Suppose f is analytic in $\{0 < |z| < r\}$ for some r > 0. Suppose also that $|f(z)| < |z|^{-1+\epsilon}$ in $\{0 < |z| < \delta\}$, where $\epsilon > 0$. Prove that f has a removable singularity at 0.
- 9. Let $D = \{z : |z| < 1\}$. Let f be analytic and non-constant on W, and suppose $\overline{D} \subset W$. Suppose |f| is constant on ∂D . Prove that f has at least one zero in D.
- 10. Prove that

$$\sum_{n=1}^{\infty} d(n) z^n = \sum_{n=1}^{\infty} \frac{z^n}{1 - z^n} \text{ for } |z| < 1,$$

where d(n) is the number of divisors of n. Carefully consider convergence issues.

- 11. Review contour integration computations.
- 12. There may be homework problems, example problems from the text, or requests for statements of theorems on the midterm.