## Math 336 Sample Problems

One notebook sized page of notes will be allowed on the test. The test will cover up to $\S$ VIIII. 2 in the text (excluding those sections for which there was no homework).

1. p. $158, \# 13$.
2. Using Rouché's theorem, show that $z^{5}+5 z^{3}+z-2$ has three roots in the set $\{z:|z|<1\}$.
3. Suppose $f(z)$ is an entire function and $|f(z)|<1+|z|^{1 / 2}$. Prove that $f$ is constant.
4. Let $D=\{z:|z|<1\}$. Suppose $f$ is analytic on an open set that includes the closure of $D$ and suppose $|f(z)|<1$ if $|z|=1$. Prove that there is a unique $\zeta \in D$ such that $f(\zeta)=\zeta$.
5. Let $u$ and $v$ be harmonic on an open connected set $W$. Suppose that $u(z) v(z)=0$ on an open subset of $W$. Prove that either $u$ or $v$ is identically 0 on $W$.
6. Let $\Omega$ be a bounded connected open set. Suppose $0 \in \Omega$ and that $f$ is an analytic function on $\Omega$ such that if $z \in \Omega, f(z) \in \Omega$. Suppose also that $f(0)=0, f^{\prime}(0)=1$. Prove that $f(z)=z$. Hint: use Cauchy's inequalities on the functions obtained by composing $f$ with itself $k$ times.
7. Let $f$ be analytic on $D=\{|z|<1\}$. Suppose $f$ is $1-1$ on $D-\{0\}$. Prove that $f$ is $1-1$ on $D$.
8. Suppose $f$ is analytic in $\{0<|z|<r\}$ for some $r>0$. Suppose also that $|f(z)|<|z|^{-1+\epsilon}$ in $\{0<|z|<\delta\}$, where $\epsilon>0$. Prove that $f$ has a removable singularity at 0 .
9. Let $D=\{z:|z|<1\}$. Let $f$ be analytic and non-constant on $W$, and suppose $\bar{D} \subset W$. Suppose $|f|$ is constant on $\partial D$. Prove that $f$ has at least one zero in $D$.
10. Prove that

$$
\sum_{n=1}^{\infty} d(n) z^{n}=\sum_{n=1}^{\infty} \frac{z^{n}}{1-z^{n}} \text { for }|z|<1
$$

where $d(n)$ is the number of divisors of $n$. Carefully consider convergence issues.
11. Review contour integration computations.
12. There may be homework problems, example problems from the text, or requests for statements of theorems on the midterm.

