Continued Fraction Approximations
of the Riemann Zeta Function

MATH 336

Shawn Apodaca
1 Introduction

Continued fractions serve as a useful tool for approximation and as a field of their own. Here we will concern ourselves with results from Cvijovic and Klinowski from *Continued-Fraction Expansions for the Riemann Zeta Function and Polylogarithms* [3]. From the results, we will be capable of numerically approximating the Riemann zeta function \(\zeta \) for integer values \(n \), which are special cases of the polylogarithm.

2 Notation

We will denote the positive integers \(N \) and \(N \cup \{0\} \) as \(\mathbb{Z}^+ \). We will define the polylogarithm function as follows.

\[
\text{Li}_\nu(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^\nu},
\]

In particular, \(\text{Li}_1(1) = \zeta(\nu) \) where \(\zeta(\nu) \) is the Riemann zeta function. We will denote the set of all real-valued, bounded, monotone non-decreasing functions \(\phi(t) \) with infinitely many values on \(a \leq t \leq b \) as \(\Phi(a, b) \) where \(a, b \) are elements of the extended reals \(\mathbb{R}^* = \mathbb{R} \cup \{-\infty, \infty\} \).

3 Preliminary Definitions and Results

Here we will give necessary definitions and some preliminary results.

3.1 Continued Fractions

We define a continued fraction as follows.

Definition 3.1. An (infinite) continued fraction \(K(a_k/b_k) \) is an expression of the form

\[
K(a_k/b_k) = \frac{a_1}{b_1 + \frac{a_2}{b_2 + \frac{a_3}{b_3 + \cdots}}},
\]

The \(n \)th approximate \(F_n \) is defined

\[
F_n = \frac{n}{k=1} \frac{a_k}{b_k} = \frac{A_n}{B_n}
\]

We say \(K(a_k/b_k) \) converges to \(F \) if the sequence of approximates converge \(F \) in the extended complex plane \(\mathbb{C}^* = \mathbb{C} \cup \{\infty\} \). We call \(A_n \) the \(n \)th numerator and \(B_n \) the \(n \)th denominator. We say \(K(a_k/b_k) \) diverges if the limit \(\lim_{n \to \infty} F_n \) does not exist. We call each \(a_k \) and \(b_k \) the \(k \)th numerator and denominator, respectively. Note that we will be use the convention that \(a_k \neq 0 \). We say two continued fractions \(K(a_k/b_k) \) and \(K(a_k^*/b_k^*) \) are equivalent, written \(K(a_k/b_k) \cong K(a_k^*/b_k^*) \), if each approximate \(F_n = F_n^* \).
A continued fraction of the form
\[K(a_k/b_k) = \frac{\infty}{K} \frac{a_k z}{k=1} \] (2)
is called a regular C-fraction (regular corresponding fraction) and a continued fraction of the form
\[K(a_k/b_k) = \frac{\infty}{K} \frac{a_k}{k=1} \] (3)
is called a modified regular C-fraction. If each \(a_k > 0\), then (2) and (3) are called regular S-fraction and modified regular S-fraction (Stieltjes fractions), respectively.

A finite continued fraction
\[\frac{\infty}{n} \sum_{k=1} a_k z \] is said to correspond to the series
\[\sum_{k=0}^{\infty} c_k z^k \] at \(z = \infty\) if the following formal power series expansions are valid:
\[F_n(z) - \sum_{p=0}^{\lambda_n} c_p z^k = \text{const} z^{-(\lambda_n+1)} + \ldots \]

Where \(n = 1, 2, 3, \ldots\).

3.2 The Stieltjes-Riemann Integral

Here we will define the Stieltjes-Riemann integral of a function \(f(x)\), denoted by \(\int_a^b f(x) d\alpha(x)\), and give a few preliminary results. Here, we will use Apostol [1]. We define \(\Delta \alpha_k = \alpha(x_k) - \alpha(x_{k-1})\) such that
\[\sum_{k=1}^{n} \Delta \alpha_k = \alpha(b) - \alpha(a) \]

We will also use the notion of a partition \(P\) of an interval \([a, b]\). This will be the same as that discussed in Folland [4]. We now define the Stieltjes-Riemann integral.

Definition 3.2. Let \(P = \{x_0, x_1, \ldots, x_k\}\) be a partition of \([a, b]\) and let \(t_k \in [x_{k-1}, x_k]\). Then the Stieltjes-Riemann sum of \(f\) with respect to \(\alpha\) is defined as
\[S(P, f, \alpha) = \sum_{k=1}^{n} f(t_k) \Delta \alpha_k \]

If there exists a unique number \(A\) such that for any \(\epsilon > 0\), there exists a partition \(P_\epsilon\) of \([a, b]\) such that for every partition \(P\) finer than \(P_\epsilon\) and for every choice of \(t_k \in [x_{k-1}, x_k]\), we have that \(|S(P, f, \alpha) - A| < \epsilon\). The number \(A = \int_a^b f(x) d\alpha(x)\).

We state without proof that \(A\) is uniquely determined whenever it exists. For our proof the main theorem, we will need the following two theorems.

Theorem 3.3. Suppose \(f\) is continuous on \([a, b]\) and \(\alpha\) is any monotonic, increasing function. Then \(f\) is integrable with respect to \(\alpha\) over \([a, b]\).
For a proof, see [2]. We now give criteria where a Stieltjes-Riemann integral simplifies to a Riemann integral.

Theorem 3.4. Suppose f is integrable with respect to α on $[a, b]$. If α is continuously differentiable on $[a, b]$, then $\int_a^b f(x) \alpha'(x) \, dx$ exists. Further

$$\int_a^b f(x) \, d\alpha(x) = \int_a^b f(x) \alpha'(x) \, dx$$

For proof, see Apostol [1].

3.3 The Markov Theorem

We will state the Markov theorem, without proof, since it will be used the proof of the main theorem. For a proof, see Perron [6]. However, we will state it as found in Jones and Thron [5].

Theorem 3.5. Suppose $\phi \in \Phi(0, a)$. Then there is a modified S-fraction which corresponds to the series

$$\sum_{k=0}^{\infty} \frac{(-1)^k \mu_k}{z^k} \quad \text{where} \quad \mu_k = \int_0^a t^k \, d\phi(t) \quad (4)$$

at $z = \infty$, converges to the function

$$\int_0^a \frac{z}{z+t} \, d\phi(t) \quad (5)$$

for all $z \in \mathbb{C} \setminus [-a, 0]$.

3.4 Hankel Determinants

Definition 3.6. Suppose $\{c_k\}_{k=0}^{\infty}$ is a sequence. Then the Hankel determinants $H^{(r)}_m$ associated with $\{c_k\}$, where $r \in \mathbb{Z}^+$ and $m \in \mathbb{N}$ are given by

$$H^{(r)}_0 = 1, \quad H^{(r)}_m = \begin{vmatrix}
 c_r & c_{r+1} & \cdots & c_{r+m-1} \\
 c_{r+1} & c_{r+2} & \cdots & c_{r+m} \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{r+m-1} & c_{r+m} & \cdots & c_{r+2m-2}
\end{vmatrix}$$

4 The Main Theorem

Theorem 4.1. Suppose that $r \in \mathbb{Z}^+$ is a non-negative integer and $m, n \in \mathbb{N}$. For any fixed r, m, n, define $A^{(r)}_m(n)$ as the determinant of an $m \times m$ matrix

$$A^{(r)}_m(n) = \det \left| \frac{(-1)^{i+j+r}}{(r+i+j-1)^n} \right|_{1 \leq i, j \leq m}$$
Where we define $A_0^{(r)}(n) = 1$. Then

$$-Li_n(-z) = \sum_{k=1}^{\infty} \frac{a_{n,k} z}{1}$$

(6)

With

$$a_{n,1} = 1, \quad a_{n,2m} = -\frac{A_0^{(1)}(n) A_{m-1}^{(0)}(n)}{A_0^{(0)}(n) A_{m-1}^{(1)}(n)}, \quad a_{n,2m+1} = -\frac{A_{m-1}^{(1)}(n) A_{m+1}^{(1)}(n)}{A_0^{(0)}(n) A_{m}^{(1)}(n)}$$

(7)

Proof. Consider the function

$$\phi_n(t) = \begin{cases}
0, & t = 0 \\
\frac{1}{(n-1)!} \int_0^t \left(\log \left(\frac{1}{x} \right) \right)^{n-1} dx, & 0 < t \leq 1 \\
1, & t > 1
\end{cases}$$

For $n = 1$, the integrand is just 1, so it is clearly integrable and $\phi_n(t)$ is continuous. Where $n \in \mathbb{N}$. Prudnikov [7] gives us

$$\int_{\epsilon}^t \left(\log \left(\frac{1}{x} \right) \right)^{n-1} dx = \sum_{k=0}^{n-1} (-1)^k \frac{(n-1)!}{k!} \left(t \log t \right)^k - \epsilon \left(\log \epsilon \right)^k$$

(8)

We apply L'Hôpital's rule to get that $\epsilon \log^k \epsilon \to 0$ as $\epsilon \to 0$. So

$$\int_{0}^{t} \left(\log \left(\frac{1}{x} \right) \right)^{n-1} dx = \sum_{k=0}^{n-1} (-1)^k \frac{(n-1)!}{k!} t \log^k t$$

(9)

L'Hôpital's rule gives that $\phi_n(t) \to 0$ as $t \to 0^+$ and $\phi_n(t) \to 1$ as $t \to 1^-$. For $0 < t \leq 1$, $\log \left(\frac{1}{x} \right) \geq 0$ and continuous and, thus, integrable, so the integral is monotonically increasing and continuous on $[0, 1]$. Further, $\phi_n(t) \in \Phi(0, \infty)$.

Consider the following integral, called the Stieltjes transform of $\phi_n(t)$.

$$f_n(z) = \int_0^{\infty} \frac{d\phi_n(t)}{z + t}$$

(10)

Where $z \notin [-\infty, 0]$. Then by (3.3), the integrand is integrable with respect to $\phi_n(t)$. Further, since $\phi_n(t)$ is continuously differentiable on $[0, \infty)$, by theorem (3.4), we have that

$$f_n(z) = \frac{1}{(n-1)!} \int_0^1 \frac{1}{z + t} \left(\log \left(\frac{1}{t} \right) \right)^{n-1} dt$$

We then substitute $x = \log \left(\frac{1}{t} \right)$. This gives us that $t = e^{-x}$ and $dt = -e^{-x} dx$. So

$$f_n(z) = \frac{1}{(n-1)!} \int_0^{\infty} \frac{x^{n-1}}{z + e^{-x}} (-e^{-x}) dx = \frac{1}{(n-1)!} \int_0^\infty \frac{x^{n-1}}{e^x + \frac{1}{z}} dx$$
This a form of the Fermi-Dirac integral, which has a known polylogarithm representation. In our case

\[f_n(z) = -Li_n \left(\frac{-1}{z} \right) \]

Using the series representation of the polylogarithm (1), we get, for \(|z| > 1\), the following.

\[f_n(z) = -\sum_{k=1}^{\infty} \frac{(-1)^k}{k^n z^k} \iff zf_n(z) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(k+1)^n z^k} = \sum_{k=0}^{\infty} \frac{c_{n,k}}{z^k} \]

Where we have let \(c_{n,k} = \frac{(-1)^k}{(k+1)^n} \). Further, Markov tells us there exists a corresponding modified S-fraction that converges to \(zf_n(z) \) for all \(z \in \mathbb{C} \setminus [0,-1] \) and even tells us that

\[c_{n,k} = (-1)^k \mu_{n,k} \tag{10} \]

Where \(\mu_{n,k} = \frac{1}{(n-1)!} \int_0^1 t^k \left(\log \left(\frac{1}{1+t} \right) \right)^{n-1} dt. \)

Jones and Thron [5] give us that whenever a series \(S = \sum_{k=0}^{\infty} \frac{c_k}{z^k} \) corresponds to a modified C-fraction \(C = \sum_{k=0}^{\infty} \frac{a_k}{1} \) at \(z = \infty \), we know that

\[a_1 = c_0, \quad a_{2m} = -\frac{H_m^{(1)} H_{m-1}^{(0)}}{H_m^{(0)} H_{m-1}^{(1)}}, \quad a_{2m+1} = -\frac{H_{m-1}^{(1)} H_m^{(0)}}{H_m^{(0)} H_m^{(1)}} \]

Which is exactly what we have, except

\[a_{n,1} = 1, \quad a_{n,2m} = -\frac{A_m^{(1)}(n) A_{m-1}^{(0)}(n)}{A_m^{(0)}(n) A_{m-1}^{(1)}(n)}, \quad a_{n,2m+1} = -\frac{A_{m-1}^{(1)}(n) A_{m+1}^{(0)}(n)}{A_m^{(0)}(n) A_{m+1}^{(1)}(n)} \]

With each \(A_m^{(c)}(n) \) as described in the main theorem. We then have

\[zf_n(z) = \frac{a_{n,1}}{1 + \frac{a_{n,2}}{z + \frac{a_{n,3}}{1 + \frac{a_{n,4}}{z + \cdots}}}} \]

Dividing both sides by \(z \) and simple factoring gives us

\[f_n(z) \cong \frac{a_{n,1}(1/z)}{1 + \frac{a_{n,2}(1/z)}{1 + \frac{a_{n,3}(1/z)}{1 + \frac{a_{n,4}(1/z)}{1 + \cdots}}}} = \sum_{k=1}^{\infty} \frac{a_{n,k}(1/z)}{1} \]
Thus, \(-\Li_n(-1/z) = \lim_{k \to \infty} \frac{a_n,k(1/z)}{1}\). So
\[-\Li_n(-z) = \lim_{k \to \infty} \frac{a_n,k z}{z}\]
And we are done.

5 Additional Results

We conclude with some calculations. Using our results, we may immediately use our results for
\(-\Li_1(-z) = \log(1 + z)\) and \(-\Li_n(-1) = (1 - 2^{1-n})\zeta(n)\), for integers \(n \geq 2\). Cvijović works out the first of these for us.

\[\log(1 + z) = \lim_{k \to \infty} \frac{a_{1,k} z}{1}\]

Where
\[a_{1,1} = 1, \quad a_{1,2m} = \frac{m}{2(2m - 1)}, \quad a_{n,2m+1} = \frac{m}{2(2m + 1)}\]

Take \(z = 1\). Then we should have an approximation for \(\log(2)\). We have
\[\left\{a_{1,k}\right\}_{k=1}^{11} = \left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{5}, \frac{1}{10}, \frac{1}{14}, \frac{1}{5}, \frac{3}{18}, \frac{1}{22}\right\}\]

So \(\log(2) \approx 0.69314721238933921\). The more precise value is \(\log(2) \approx 0.6931471805599453\). For \(z = 2\), that is, \(\log(3)\), we multiply each of the \(a_{1,k}\) by 2. This gives us an approximation
\[\log(3) \approx 1.0986122837662749635\] as compared to the more precise \(\log(3) \approx 1.0986122837662749635\).

More appropriately, let \(z = e^{-1}\). Using this value will, of course, give us an exact value for \(\log(e) = 1\) to compare to. We get \(\log(e) \approx 0.69314721238933921\). The exact value of \(\log(e) = 1 + \frac{i\pi}{2}\).

Using Mathematica v.6, we calculate the first 6 numerators of \(a_{n,k}\) for \(1 \leq n \leq 10\) (attached).
With the above table, we calculate the 6th approximants F_6 for a given n of the continued fraction expansion of the Riemann zeta function $\zeta(n)$. Below is a table of values for $2 \leq n \leq 10$ accompanied by the values found using Mathematica’s internal command.

<table>
<thead>
<tr>
<th>n</th>
<th>F_6</th>
<th>Mathematica</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.644969002937126</td>
<td>1.6449340668482262</td>
</tr>
<tr>
<td>3</td>
<td>1.2020463030724917</td>
<td>1.2020569031595942</td>
</tr>
<tr>
<td>4</td>
<td>1.082320277569941</td>
<td>1.08232323711138</td>
</tr>
<tr>
<td>5</td>
<td>1.036927009498681</td>
<td>1.0369277551433698</td>
</tr>
<tr>
<td>6</td>
<td>1.0173428854434825</td>
<td>1.017343061984449</td>
</tr>
<tr>
<td>7</td>
<td>1.008349239007861</td>
<td>1.0083492773819227</td>
</tr>
<tr>
<td>8</td>
<td>1.004077348357326</td>
<td>1.004077356197944</td>
</tr>
<tr>
<td>9</td>
<td>1.0020083913041948</td>
<td>1.0020083928260821</td>
</tr>
<tr>
<td>10</td>
<td>0.9990395073157157</td>
<td>1.0009945751278178</td>
</tr>
</tbody>
</table>
References

1. T. M. Apostol, Mathematical Analysis (2nd Edition), Adison-Wesley, 1974