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As the amount of information grows rapidly and widely, feature extraction
become an indispensable technique to extract the relatively most significant
information from the given data. One benefits of this is that it allows people
have better and faster understanding about the main property of a set of
data which may contain noises. As long as the feature of the information is
found, it can also used to compress, to compare or to identify some related
information. One major application of feature extraction is in image analysis.
With the increasing amount of images and videos in our life, it is significant
to use some intelligent machines to identify the object shown in a picture, or
to detect the occurrence of a specific object in the video.

One approach to extracting feature is using wavelet analysis introduced
by MIT.[1] The wavelet transform used here is a efficiently computable Haar
wavelet transform. Images are mapped from space of pixels to that of Haar
wavelet features that contains rich descriptions of the pattern.

Another commonly used technique for feature extraction is the Principal
Component Analysis (PCA), especially in face detection. What PCA do is
project a set of images from a high dimensional space of pixels to a lower di-
mensional space which has the set of images as its main component. However,
this method has a limitation that it cannot eliminate out noise well enough.
Therefore, a better solution is to combine wavelet analysis with PCA, called
Wavelet PCA, which can improve the result of feature extraction.[2]

1 The Haar System in Wavelet Transform

This section will first introduce an example of an orthonormal system on [0, 1)
known as the Haar system. The Haar basis is the simplest example of an
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orthonormal wavelet basis. Then we will develop a way to express a function
as a composition of the Haar scaling function and the Haar function. Finally,
a discrete version Haar transform is given to make it easy to compute.

1.1 The Haar System

Definition 1.1. For each pair of integers j, k ∈ Z, define the interval Ij,k
by

Ij,k = [2−jk, 2−j(k + 1)).

The collection of all such intervals is called the collection of dyadic subinter-
vals of R.

Remark. For any two dyadic intervals, either they do not overlap or one
contains the other one.[3]

Definition 1.2. Let p(x) = χ[0,1)(x) , and for each j, k ∈ Z, define the scale
j Haar scaling functions to be

pj,k(x) = 2j/2p(2jx− k) = 2j/2χIj,k
(x).

Remark. For each j, k ∈ Z,∫
R

pj,k(x)dx =

∫
Ij,k

pj,k(x)dx = 2−j/2

and ∫
R

|pj,k(x)|2dx =

∫
Ij,k

|pj,k(x)|2dx = 1.

Definition 1.3. Let h(x) = χ[0,1/2)(x) − χ[1/2,1)(x) , and for each j, k ∈ Z,
define the scale j Haar functions to be

hj,k(x) = 2j/2h(2jx− k).

Remark. (a) It is obvious that hj,k is associated with the interval Ij,k,
for

hj,k = 2j/2(χIj+1,2k
(x)− χIj+1,2k+1

).

(b) For each j, k ∈ Z,∫
R

hj,k(x)dx =

∫
Ij,k

hj,k(x)dx = 0

and ∫
R

|hj,k(x)|2dx =

∫
Ij,k

|hj,k(x)|2dx = 1.
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1.2 Orthogonality of the Haar System

Theorem 1.1. The Haar system on R is an orthonormal system on R.

Proof. To show that the Haar system is orthonormal, we need to show

〈hj,k, hj′,k′〉 =

{
0 if j 6= j′ or k 6= k′

1 if j = j′ and k = k′

Suppose j 6= j′ or k 6= k′, then the two Dyadic intervals Ij,k and Ij′,k′ do
not intersect. So hj,k(x)hj′,k′(x) = 0, for the functions do not have positive
values on the same point. Then, it is easy to see that

〈hj,k, hj′,k′〉 =

∫
R

hj,khj′,k′dx = 0.

If j = j′ and k = k′, by the previous remark,

〈hj,k, hj′,k′ =

∫
R

hj,khj′,k′dx =

∫
Ij,k

|hj,k(x)|2dx = 1.

Remark. With similar proof, we can show that the Haar scaling functions
pj,k is also orthonormal.

1.3 The Approximation and Detail Operators

Definition 1.4. For each j ∈ Z, define the approximation operator Aj on
functions f(x), L2 on R, by

Ajf(x) =
∑

k

〈f, pj,k〉pj,k(x).

Since pj,k are orthonormal, we can prove the following nice fact of the
operator of Aj. To prove this lemma, see David F. Walnut[3].

Lemma 1.1. (a) Given j ∈ Z, and f(x), L2onR, ‖Ajf‖2 ≤ ‖f‖2.

(b) Given f(x), C0 on R, limj→∞ ‖Ajf − f‖2 = 0.

(c) Given f(x), C0 on R, limj→∞ ‖Ajf‖2 = 0.

Definition 1.5. For each j ∈ Z, define the detail operator Dj on functions
f(x), L2 on R, by

Djf(x) = Aj+1f(x)− Ajf(x).
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Remark. With some manipulation of the operator Ajf , we can show
that

Djf(x) =
∑

k

〈f, hj,k〉hj,k(x).

See [3].

1.4 Expansion in Term of Haar function

With all the previous definitions and lemmas set, we are ready to prove the
major theorem.

Theorem 1.2. Given f(x), C0 on R and J ∈ Z, f can be expanded as

f(x) =
∞∑

j=J

∑
k

〈f, hj,k〉hj,k(x) +
∑

k

〈f, pJ,k〉pJ,k(x)

Proof. Given ε > 0, by lemma 1.1(b), there is an integer N > J such that
‖ANf − f‖2 < ε. By definition,

N−1∑
j=J

Djf(x) =
N−1∑
j=J

[Aj+1f(x)− Ajf(x)]

=
N∑

j=J+1

Ajf(x)−
N−1∑
j=J

Ajf(x)

= ANf(x)− AJf(x).

Therefore,

ANf(x) =
N−1∑
j=J

∑
k

〈f, hj,k〉hj,k(x) +
∑

k

〈f, pJ,k〉pJ,k(x)

Since ‖ANf − f‖2 < ε, we proved

f(x) =
∞∑

j=J

∑
k

〈f, hj,k〉hj,k(x) +
∑

k

〈f, pJ,k〉pJ,k(x)

Remark. What we have just proved can be also written as f(x) ∈
span{pJ,k(x), hj,k(x)}j≥J,k∈Z. In fact f(x) ∈ span{hj,k(x)}j,k∈Z also holds.
See [3].
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1.5 Discrete Haar Transform

By the previous lemma, if a function f(x) is defined on [0, 1) rather than on
R, then given any integer J ≥ 0, we have

f(x) =
∞∑

j=J

2j−1∑
k

〈f, hj,k〉hj,k(x) +
2j−1∑

k

〈f, pJ,k〉pJ,k(x)

In order to find the Discrete Haar Transform (DHT), assume that we are

given a finite sequence of data of length 2N for some N ∈ N, {c0(k)}2N−1
k=0 .

Also assume that for some underlying function f(x), c0(k) = 〈f, pN,k〉. Fix
J ∈ N, J < N, and for each 1 ≤ j ≤ J , define

cj(k) = 〈f, pN−j,k〉 and dj(k) = 〈f, hN−j,k〉.

There exists a convenient recursive algorithm that can be used to compute
the coefficients cj(k) and dj(k) from cj−1(k).

cj(k) = 〈f, pN−j,k〉
= 〈f, pN−j+1,2k〉/

√
2 + 〈f, pN−j+1,2k+1〉/

√
2

= cj−1(2k)/
√

2 + cj−1(2k + 1)/
√

2,

and also

dj(k) = 〈f, hN−j,k〉
= 〈f, hN−j+1,2k〉/

√
2− 〈f, pN−j+1,2k+1〉/

√
2

= cj−1(2k)/
√

2− cj−1(2k + 1)/
√

2.

Therefore, we can now define the Discrete Haar Fransform in matrix form,
which makes the calculation clear.

Definition 1.6. Given J,N ∈ N with J < N and a finite sequence {c0(k)}2N−1
k=0 ,

the DHT of c0 is defined by

{cJ(k) : 0 ≤ k ≤ 2N−J − 1} ∪ {dj(k) : 1 ≤ j ≤ J ; 0 ≤ k ≤ 2N−j − 1},

with (
cj
dj

)
=

(
H
G

)
cj−1,
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where

H =
1√
2


1 1 0 0 · · · 0 0
0 0 1 1 0 · · · 0

...
0 0 · · · 0 0 1 1



G =
1√
2


1 −1 0 0 · · · 0 0
0 0 1 −1 0 · · · 0

...
0 0 · · · 0 0 1 −1

 .

Remark. Define matrix

W =

(
H
G

)
.

Then matrix W is invertible, which allow us to reconstruct cj−1 from cj and
dj by

cj−1 = W−1

(
cj
dj

)
.

1.6 The DHT in Two Dimensions

DHT can be widely applied in discrete signal processing. In some case, the
signal might be two dimensional, like image data. Therefore, it is necessary
to have a DHT for two dimensional case. Actually, two dimensional DHT is
just a composition of the one dimensional DHT twice in rows direction and
columns respectively.

Let c be a M ×L matrix. Also let Hrow and Grow be the same matrix as
H and G but operate on every row of c, and let Hcol and Gcol be the same
matrix as H and G but operate on every column of c. Now for simplicity,
assume c is alway a square matrix that has 2n rows

Definition 1.7. Given J,N ∈ N with J < N and a matrix c0 = {c(m,n)}2N−1
n,m=0.

For 1 ≤ j ≤ J , define the 2N−j × 2N−j matrices cj, d
v
j , d

h
j , d

d
j by

cj = HcolHrowcj−1,

dv
j = GcolHrowcj−1,

dh
j = HcolGrowcj−1,

dd
j = GcolGrowcj−1.
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2 Image Analysis with Discrete Haar Trans-

form

2.1 Images in Mathematics

Images in mathematics are just described as two dimensional functions.

Definition 2.1. A N ×M gray image is a function f(n,m) maps n,m ∈
Z+ with 1 ≤ n ≤ N, 1 ≤ m ≤M to R+.

Definition 2.2. A N×M color image is a multi-value function f(n,m) =
(R(n,m), G(n,m), B(n,m)) maps n,m ∈ Z+ with 1 ≤ n ≤ N, 1 ≤ m ≤ M
to R3+, where function R,G,B represent the color decomposition on red,
green and blue respectively.

Although color image contains richer information, it is more complicated
to deal with. Here we mainly focus on the analysis of gray image which is
just a two-dimensional single valued function.

2.2 DHT on Image

Two dimensional DHT will decompose a image into four components. cj
represents the approximated image. In the DHT case, cj is just averaging
the values of every continuous 2j pixels. dh

j will give the horizontal detail
information of the given image while dv

j gives the detail information vertically.
dd

j is the main wavelet coefficient we will work on, which shows the detail
information of the image in diagonal.

For example, given a image of c car

Figure 1: A color image of a car
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We apply the two dimensional DHT on the image.

Figure 2: The coefficients of the scale 1 (i.e. j = 1 ) decomposing of the
original image. Going clockwise from up-left corner, they are c1, d

v
1, d

h
1 , d

d
1

respectively.

We can see, the vertically decomposing coefficients dv
1 show more clearly

the horizontal profile line of the car and the horizontally decomposing co-
efficients dh

1 show more vertical profile line. dd
1 is more balanced. We call

coefficients dd
1 the extracted feature of the image.

To see more concise extracted feature, we can apply DHT on the resulting
coefficient c1 to get a deeper decomposing of the original image.

Figure 3: The coefficients of the scale 5 (i.e. j = 5 )decomposing of the
original image. Going clockwise from up-left corner, they are c5, d

v
5, d

h
5 , d

d
5

respectively.
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Remark. Wavelet transform can extract the detail of data pretty well.
However, if given a set of similar data, for example a set images of different
cars, how do we get the major feature which describes all the car images.
Here we will take the advantage of the Principal Component Analysis.

3 Principal Component Analysis

3.1 Statistics

Give a list of data of size n, X = (X1, X2, · · · , Xn), we have mean value
E[X] = (

∑
Xi)/n to describe the average information, and the Standard

Deviation s =
√∑

(Xi−E[X])2

n−1
illustrate how spread out the data is. Another

common way to describe the spreading out of data is variance.

Definition 3.1. Define the variance of data X to be

V ar(x) = E[(X − E[X])2].

However, the variance only describe how X is spread out on the axis.
Suppose another list of data Y is given, it will be use to see how the points
(Xi, Yi) is spread out on the plane.

Definition 3.2. Define the covariance to be

Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])].

Remark. The covariance of X with itself is just the variance of X.
Consider a higher dimensional case, that is give more data Z,W and so

on. We want to study how the data are related with each other. It will be
convenient if all the covariance between every two list of data.

Definition 3.3. Define the covariance matrix to be

Cn×n = (ci,j, ci,j = Cov(Dimi, Dimj)),

where Cn×n is a n× n matrix, and Dimi is the ith dimension.

Remark. In three dimensional case, C can be write as

C =

 cov(X,X) cov(X, Y ) cov(X,Z)
cov(Y,X) cov(Y, Y ) cov(Y, Z)
cov(Z, Y ) cov(X, Y ) cov(Z,Z)

 .
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3.2 The Mechanism of PCA

Consider points in n-dimensional space. Suppose we have m points Xi =
(x1, x2, · · · , xn)T , 1 ≤ i ≤ n satisfying that E[Xi] = 0. What PCA does
is to rotate the points together on the space such that the points only
spread out along axises. To see a mathematical description, define X =
(X1, X2, · · · , Xm) so that X is a n×m matrix which contains all the infor-
mation of the given data. By the definition above, the covariance matrix of
these points on the space is simply written as

Cx =
1

m
XXT .

Now we want to find a linear transform orthonormal matrix P that transform
X to Y by

Y = PX,

such that the covariance matrix of Y,CY , is a diagonal matrix. The rows of
P is then called the principal components of X.

3.3 Solving PCA Using Eigenvector Decomposition

Let Y = PX, where P is an orthonormal matrix. Notice that

CY =
1

m
Y Y T

=
1

m
(PX)(PX)T

=
1

m
PXXTP t

= P (
1

m
XXT )P T

= PCXP
T .

For given matrix A = XX t, A is symmetric, for

AT = (XXT )T = XXT = A.

Therefore, CX is a symmetric matrix. There are some very nice properties
about a symmetric matrix.

Definition 3.4. (Orthogonal Diagonalizable) Let A be a n× n matrix. A is
orthogonal diagonalizable if there is a orthogonal matrix B(i.e. BTB = I)
such that S−1AS is diagonal.
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Theorem 3.1. (Spectral Theorem) Let A be a n×n matrix. A is orthogonal
diagonalizable if and only if A is symmetric.

See Serge Lang[4] for the proof.

Theorem 3.2. Let A be a n× n matrix. A is diagonalized by its matrix of
eigenvectors.

Proof. let ei, 1 ≤ i ≤ n be the independent eigenvectors of A with ‖ei‖ = 1.
for any two eigenvector ei and ej, i 6= j,

λi〈ei, ej〉 = (λiei)
T ej

= (Aei)
T ej

= eT
i (AT ej)

= eT
i (Aej)

= λj〈ei, ej〉

Since λi 6= λj, we have 〈ei, ej〉 = 0. Let E = (e1, e2, · · · , en). By orthogo-
nality, EET = I. Therefore, AE = EΛ implies

A = EΛE−1 = EΛET .

Now to find the transform P , the trick is let P ≡ ET , where CX = EΛET .
Then

CY = PCXP
T

= PEΛETP T

= (ETE)Λ(ETE)

= Λ.

3.4 Maximum Principal Components of Data

We have found the transform P that Y = PX and CY is the eigenvalue
matrix of CX .Suppose we are only interested in the subspace in the n-
dimensional space where the points are mostly spread out, then we need
to choose the CY to be the k × k eigenvalue matrix where the λ1, λ2, · · · , λk

is the top k maximum eigenvalues of CX . Let e1, e2, · · · , ek be the corre-
sponding eigenvectors. P is therefore composed by (e1, e2, · · · , e3)

T . Thus
the Y will be the coordinates of the projection of the points on those principal
axes.[5]
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4 Wavelet PCA based Feature Extraction Ex-

ample

Now suppose we have a set of images, which represents the same object with
some noise in the images. We will use wavelet transform and PCA to find a
better way to get the description of the set of images.

To illustrate the method more clearly, we choose a set of 24 face images
which is token from the same person.

Figure 4: A set of black and white image of faces of the same person

Next apply DHT of scale 2 to each image of face, we obtain
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Figure 5: A set of detail of face images after DHT.

The average the these images are

Figure 6: The average of the detail of the face images after DHT.

Apply PCA on this set of 24 images to find the a better feature which
puts more emphasis on the common of the faces.

To use PCA on images. First, concatenate each image as an vector Zi.
In this case, each image is 60 by 80, so each vector Zi has dimension 4800.
Suppose Z̄ is the average of Zi, let Xi = Zi − Z̄. As described earlier, this
will centralize the data in the space. So we have a matrix form

X = (X1, X2, · · · , X24).

which is better for computing. Again let

Y = PX.

Then we can solve for P and Y by the method introduced previously, where
P is the transform matrix and each column Yi of Y is the projection of image
Xi.
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Particularly, let P be consisted by the eigenvectors with the top 3 greatest
eigenvalues so that we can eliminate some noise of the 24 image and get the
principal components. Therefore, P has dimension 3×4800, and Y is a 3×24
matrix. So under the transform ofP , Yi has three values and gives a good
description of image Xi. The amazing thing is when comparing different
faces, projecting face image by P first will gives a better comparison result
between images. Therefore, PCA is also a common way used in face detection
and recognition.

Finally, to get an intuitive feeling of Y , we can transform back be recon-
struct the images which are the results of enhancing the common feature and
weakening the noises by the formula

Z
′

i = P TYi + Z̄.

and Z
′
i can be shown by the images below.

Figure 7: Reconstruct images according to the main feature

This example gives some illustration that wavelet transform and Principal
Component Analysis can extract the common feature of a set of data, and
gives a concise representation of them. However, this method still has some
limitation and does not work well in some case, see [1] and [2]
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