Math 336 Sample Problems

One notebook sized page of notes will be allowed on the test. The test will cover up to $\S 4.4$ in the text (excluding those sections for which there was no homework).

1. p. $195, \# 11, \# 14$
2. p. $253, \# 15, \# 16$
3. Let $u(z)$ be harmonic on $D=\{|z|<1\}$ and continuous on the closure of D. Use the Poisson integral formula to prove

$$
\frac{1-r}{1+r} u(0) \leq u(z) \leq \frac{1+r}{1-r} u(0)
$$

where $|z|=r$.
4. Let C be the open arc of the unit circle in the first quadrant. Find a bounded function u, which is harmonic on $\{z:|z|<1\}$, with

$$
\lim _{z \rightarrow \zeta} u(z)=\left\{\begin{array}{l}
1 \text { if } \zeta \in C \\
0 \text { if } \zeta \notin \bar{C},|\zeta|=1
\end{array}\right.
$$

Find an unbounded harmonic function with the same properties.
5. Is there an analytic function f such that $|f(z)|<1$ for $|z|<1$, with $f(0)=\frac{1}{2}$ and $f^{\prime}(0)=1$? Hint: Use Schwarz's Lemma.
6. Using Rouché's theorem, show that $z^{5}+5 z^{3}+z-2$ has three roots in the set $\{z:|z|<1\}$.
7. Let f be analytic on $D=\{z<1\}$. Suppose f is $1-1$ on $D-\{0\}$. Prove that f is $1-1$ on D.
8. Let $u(z)$ be harmonic in all of \mathbf{C}. Suppose $|u(z)| \leq c|z|^{n}$ for some positive constant c. Prove that u is the real part of a complex polynomial of degree at most n. Hint: Use

$$
u(z)=\operatorname{Re}\left\{\left(\frac{1}{2 \pi i}\right) \int_{|\zeta|=r} u(\zeta)\left(\frac{\zeta+z}{\zeta-z}\right) \frac{d \zeta}{\zeta}\right\}
$$

if $|z|<r$.
9. There may be homework problems, example problems from the text, or requests for statements of theorems on the midterm.

