Math 336 Sample Problems

One notebook sized page of notes will be allowed on the test. The test will cover up to section 2.6 in the text.

- 1. Suppose that v is the harmonic conjugate of u and u is the harmonic conjugate of v. Show that u and v must be constant.
- 2. Suppose $\sum_{0}^{\infty} |a_n|^2$ converges. Prove that $f(z) = \sum_{0}^{\infty} a_n z^n$ is analytic for |z| < 1. Compute $\lim_{r \to 1} \int_{0}^{2\pi} |f(re^{it})|^2 dt$.
- 3. Let a be a complex number and suppose |a| < 1. Let $f(z) = \frac{z-a}{1-\overline{a}z}$. Prove the following statuents.
 - (a) |f(z)| < 1, if |z| < 1.
 - (b) |f(z)| = 1, if |z| = 1.
- 4. Let $z_j = e^{\frac{2\pi i j}{n}}$ denote the n roots of unity. Let $c_j = |1 z_j|$ be the n-1 chord lengths from 1 to the points $z_j, j = 1, \ldots, n-1$. Prove that the product $c_1 \cdot c_2 \cdots c_{n-1} = n$. Hint: Consider $z^n 1$.
- 5. Let $f(z) = x + i(x^2 y^2)$. Find the points at which f is complex differentiable. Find the points at which f is complex analytic.
- 6. Find the Laurent series of the function $\frac{1}{z}$ in the annulus $D=\{z:2<|z-1|<\infty\}$.

7. Using the calculus of residues, compute

$$\int_{-\infty}^{+\infty} \frac{dx}{1 + x^4}$$

- 8. Let $f(z) = \frac{p'(z)}{zp(z)}$, where $p(z) = \prod_{j=1}^{n} (z z_j)$ and the z_j are distinct and different from 0. Find all the poles of f and compute the residues of f at these poles.
- 9. Let f be analytic within and on a simple closed curve Γ . Prove that $Re\left(\int_{\Gamma} \overline{f}(z)f'(z)dz\right) = 0.$
- 10. Compute $\int_{|z|=r} \frac{|dz|}{|z-a|^2}$, where $|a| \neq r$. Use the fact that on $\{|z|=r\}, \ |dz|=-ir\frac{dz}{z}$; and then use the Cauchy integral formula.
- 11. You will need to know the definitions of the following terms and statements of the following theorems.
 - (a) Absolute Value (Modulus) and Argument of a complex number
 - (b) $\lim_{z\to a} f(z)$
 - (c) Continuity
 - (d) Complex Derivative
 - (e) Cauchy-Riemann equations
 - (f) Harmonic Conjugate
 - (g) Complex Analytic
 - (h) Differentiability of Power Series
 - (i) Complex Exponential Function
 - (j) Complex Logarithm
 - (k) Cauchy's Integral Theorem
 - (l) Cauchy's Integral Formula

- (m) Morera's Theorem
- (n) Liouville's Theorem
- (o) Isolated Singularities (types)
- (p) Residues
- (q) Residue Theorem
- (r) Laurent Series
- 13. There may be homework problems or example problems from the text on the midterm.