
Probabilistically Checkable Proofs and
Approximating Solutions to Hard Problems

Kyle Littlefield

June 8, 2005

Contents

1 Introduction 2

2 A Brief Introduction to Theory of Computation 3
2.1 Some Notation . 3
2.2 Modelling Computation - Turing Machines 3
2.3 NP Problems . 5
2.4 SampleNP Problems . 7
2.5 Optimizations forNP Problems 9

3 Defining NP in terms of probability 11
3.1 Definition of PCP . 11
3.2 ExtendingNP to PCP: An obvious connection 13
3.3 The PCP Theorem:NP = PCP(log n, 1) 14

4 Applications of the PCP Theorem 14
4.1 Establishing the Non-approximability of MAX-SNP problems . . 15
4.2 Clique Approximability . 17

5 Conclusion 20

1

1 Introduction

In theoretical computer science, one is often interested in the worst case behavior
for an algorithm. It is not a surprise that there are some problems for which
there is no known algorithm that does not, in its worse case, degenerate to a brute
force search over all possibilities. Since the number of possibilities for many of
these problems is exponential in the size of the input, such brute-force algorithms
quickly become impractical as input size grows. The set of problems that can be
solved by a brute force search is known asNP. The set of problems that are inNP
are normally defined through a polynomial time, deterministic check of a “proof”
applied to the input.

Of great interest is whetherNP = P, whereP is the set of all problems for
which an algorithm exists whose worst case running time is bounded by a polyno-
mial p(n) for all inputs of sizen. Problems having such a solution are in a sense
easy, in that a doubling of computational power multiplies the size of problems
that can be solved by a constant factor, regardless of the current size of input that
can be solved. For problems for which the best solution grows exponentially in
input size, a doubling of computational power only adds a constant term to the
size of problems that can be solved. Since computational power has (for quite a
while) grown exponentially, problems solvable in polynomial time are those for
which progress is being made “by leaps and bounds”; exponential growth prob-
lems can be described as “if you can’t solve it today, you won’t be able to anytime
soon” or “you won’t be able to solve much larger problems anytime soon”.

Empirical evidence (i.e. lots of people trying to find efficient solutions to these
problems) indicates thatNP 6= P; that there are some problems inNP that can
not be solved in polynomial time by any algorithm. However, there is no proof
P 6= NP — indeed the problem is easily the most important and well-known
unsolved problem in the field.

Probabilistically checkable proofs (PCPs) are a recent development that pro-
vide an alternate definition ofNP that is based not on deterministic proof check-
ing, but on randomized proof checking. In particular, recent results have shown
thatNP = PCP(log n, 1). Showing thatNP, a set of problems normally defined
in deterministic terms, is equivalent to a set of problems whose solutions can be
recognized in a probabilistic manner, provides new ways for tacklingNP prob-
lems and showing interesting and useful results about them. Recent expositions
[3] make this subject highly accessible. The purpose of this paper is to describe
how PCPs work and to apply them to prove some performance limits for certain
NP problems.

2

2 A Brief Introduction to Theory of Computation

Before one can consider probabilistically checkable proofs, it is necessary to start
with some definitions of the set of problems under consideration, and the model
of computation that is used to work with these problems in a theoretical setting.

2.1 Some Notation

Definition 2.1. A functionf(n) is O (g(n)) if there are constantsc andn0 such
that for all n > n0, f(n) < cg(n). This is just a formalization of the idea that
the relative growth rate of one functiong(n) is at least as great as that of another
functionf(n). We assume that bothf andg are increasing for largen - this will
be true of all functions considered in this paper.

Corollary 2.2. One immediate consequence of this definition is that a polynomial
in x of degreek is O

(
xk

)
.

Definition 2.3. An algorithm for solving a problem ispoly (n) if it is O
(
nk

)
for

somek. Heren is the size of the input to the algorithm.

2.2 Modelling Computation - Turing Machines

The standard model of computation is the Turing machine. Basically, a Turing
machine is a model of a person sitting at a desk, reading from and writing to a
tape of paper on the desk. At any point in time, the person can take his current
state and read the single symbol on the tape directly in front of him. He can then
erase this symbol and write a new one, choose to move the tape either to the left
or the right, and transition to a new state. Formalizing this notion gives a concise
definition of a Turing machine.

Definition 2.4. A Turing machine consists of

i. A finite set of statesQ, one of which is the start state, one is the accept state,
and one is the reject state.

ii. An input alphabetΣ.

iii. A tape alphabetΓ, including a unique end-of-input symbol and satisfying
Σ ⊂ Γ

3

iv. A transition function of the formQ× Γ → Q× Γ× {Left or Right}

The tape alphabet is read from/written to a single, infinite length tape. There
is one read head which is held in a fixed position while the tape moves. The
transition function specifies for a given state of the machine and the symbol just
read from the tape,

i. the new state to transition to

ii. the symbol to write onto the tape at the current position

iii. whether to move the read/write head to the left or the right

Figure 1 graphically shows a Turing machine (without showing the tape al-
phabet or transition function):

Figure 1: Graphical representation of a Turing machine

A Turing machine is executed by writing the input on the work tape, putting
the machine in the start state and repeatedly executing the transition function for
the current state and symbol. The machine terminates when it transitions into
either the accept or reject state. Alternately, the machine may never halt. By
appending a few state transitions to the accept/reject state, and redefining these
states, we can further connect a Turing machine with the real world by having it
print the answer on its tape before halting. If a machineM terminates in the accept
state for an inputx, then we say thatM ACCEPTSx. Likewise, if it terminates
in the reject state, we say thatM REJECTSx. While this may seem like a limited

4

model of computation, Turing machines can perform any computation done by
the actual computers that exist in practice. Thus Turing machines provide a very
simple, complete model of computation.1

As a further simplification, the alphabetΓ of the Turing machine is not really
very important. Any Turing machineM has an equivalent Turing machineN that
has a tape alphabet consisting of only{0, 1}. Equivalent in this case means that
the same result (ACCEPT, REJECT, or run forever) is achieved by both machines
for all inputs. We must slightly relax the requirements of the above description
for this to work, by removing the requirement thatΓ have a unique end-of-input
symbol. Instead we require only thatN be able to recognize the end of the input.
The transformation works as follows. Leta be the size of the tape alphabetΓ, and
k = dlog2 ae. Then each symbols ∈ Γ can be given a unique k-digit binary rep-
resentation. Inputs forM will be given as inputs toN after each symbol has been
replaced by its k-digit encoding. The idea is then to decode a symbol by reading
k tape positions (always transitioning to the right), then write the encoding of the
symbolM would write (by transitioningk symbols to the left), then transition
left or right byk tape positions to simulate the moveM makes. This notion can
be formalized - we will not do so here. The decoding of the symbol causes a2k

blowup in the number of states of the machine, because each state has to have
its own decoding routine. When runningN , each transition ofM corresponds to
a 3k path of transitions inN , consisting of reading the encoded symbol ofΓ in
k transitions, traversing back over the encoded symbol to write the encoding of
the symbolM would write in this situation, and finally traversingk tape spots
to the left or right to simulate the single left/right movement of the transition of
M . The increase in running time of this transformation is therefore bounded for
all inputs by3k. For a given machine, this bound is a constant. Therefore, for
any functiong(n) such that the running time ofM is O (g(n)), the running time
of N is alsoO (g(n)). The downside of this transformation is that it makes it
harder to represent individual Turing machines such that a person can understand
what is happening, but when considering Turing machines as a group of objects,
eliminating having to deal with alphabets is a great simplification.

2.3 NP Problems

Moving on with defining things, we reach the class of problems known asNP.
All problems inNP are decision problems, the answer is to either ACCEPT or

1Not extending to such realms as quantum computing.

5

REJECT the input, and we want to accept all inputs with a certain feature. The
classNP is typically defined as the set of problems that have an efficient certifier
M , which is a Turing machine such that:

i. For allx ∈ L there exists a proofπx such thatM ACCEPTS(x, πx) and the
length ofπx ≤ dnc (alternately,poly(n)), wheren is the size ofx andc and
d are some positive constants. (The notation (x, y) as input forM means
thatx andy are given as input toM on its tape, separated by a special input
symbol corresponding to the comma.)

ii. For all x /∈ L, for all π, M REJECTS(x, π)

iii. M terminates in a time that is polynomial inn for all x andπ

The meaning ofx ∈ L andx /∈ L will be made clear shortly. For now, just
think of them as meaning, respectively, for all inputs having the desired feature,
and for all inputs not having that feature. The proof for a verifier is not the same as
a mathematical proof, which gives a series of justified steps to reach a conclusion.
Here a proof is merely some suggestion to the verifier about how to determine (in
polynomial time) that the input either has the feature or it doesn’t. A proof for
the verifier is like a hint for solving a math problem. It allows the verifier to go
through a sequence of rigorous deductions to conclude thatx ∈ L, but it is not
necessarily this proof itself (although it could be). Note that for a given input,
multiple such proofs likely exist — a verifier does not have to accept every proof
that showsx ∈ L, it need only accept one. This normally corresponds to the
verifier expecting the input to be formatted in a certain way.

How do we translate problems involving real objects and complex represen-
tations into something that can be put into a Turing machine? This is done by
simply picking an encoding and using it. For example, if we want to encode a
graph, this may be done by encoding first the number of vertices in binary and
then the adjacency matrix representation of the graph. The idea here is to just
flatten the representation of the problem to one that can be written on the single
working tape of a Turing machine.

Additionally, when we think aboutNP problems, we assume that there are a
finite number of possible “proofs” that must be considered to determine whether to
accept the input. However, there is no need to explicitly add this as a requirement
to the above; it is already contained in the definition. This is simple to see, since
we can just check every possible proof up to lengthdnc, running the verifier on
each. If any accepts, then the input is accepted, otherwise it is rejected. The

6

number of such possible proofs is
∑dnc

k=1 2k = 2dnc+1 − 1. Clearly this number
is finite but exponential in terms of input size. Thus any problem inNP can be
solved by a search over a number of possibilities that is exponential in the size of
the input.

Next we move on toNP as language recognition, which will clarify the mean-
ing of x ∈ L andx /∈ L above. To start with, the definition of a language is:

Definition 2.5. A language is a set (either finite or infinite) of strings over an
alphabet of symbols.

For example, one language is the set of strings that can be written using the
English alphabet that contain only A’s and B’s, and are one or more symbols long.
This language is{A, B, AA, AB, BA, BB, AAA, . . . }.

Take the set of all problem inputs such that the solver should accept. Then the
encodings of all of these inputs relative to a given encoding scheme constitutes
a language. Thus everyNP problem is one of deciding whether a given string
belongs in a language. I.e.NP problems are language recognition problems.

This definition in terms of an efficient verifier formalizes the notion that prob-
lems inNP can be solved by brute-force search over a finite number of possibil-
ities, and that it is easy to write a solver for anyNP problem. (Given the verifier
M , the constantsc, andd, and the encoding scheme.) SinceP ⊆ NP, there are
clearly some problems inNP that can be solved efficiently, i.e. in polynomial
time. This is clear, since some languages (such as the example above) have an
obvious polynomial time recognition algorithm. For the example, a single linear
pass of the input suffices. The question is whether a particularNP problem has
such a polynomial solution algorithm or whether no algorithm does significantly
better than the brute-force search strategy given above. There is no general tech-
nique for determining the answer to this question.

2.4 Sample NP Problems

The staple problem inNP is 3SAT, the purpose of which is to determine if a
boolean formula has an assignment of values to its variables such that the state-
ment is true. The form of the boolean formula is tightly constrained — it is a
conjunction of disjunctions, each of which has three base variables, which may
or may not be negated. While this form seems rather restrictive, any boolean for-
mula which uses AND, OR, and NOT can be reduced to the given form through a
sequence of simple manipulations.

7

An example 3SAT problem would be to find assignments of true or false for
A, B, C, and D such that the following is true:

(A ∨B ∨ C) ∧ (¬A ∨ ¬B ∨D) ∧ (¬B ∨ ¬C ∨ ¬D)

In the example given, assigning true to A, false to B, true to C, and true to D is
one satisfying assignment (there are others). Clearly, there is a verifier that runs in
O (n) time for 3SAT. The proofs for this verifier consist simply of an assignment
of either true or false to each variable. The verifier then simply plugs these values
into the formula, takingO (n) time to evaluate the formula. In addition, the proof
can be no longer than the number of variables, which is certainly less than the
entire input. So proofs are size bounded byO (n). Thus 3SAT is inNP by the
definition of an efficient certifier.

What is not obvious about the 3SAT problem is that it is at least as hard as
any other problem inNP. This means that any other instance of a problem in
NP can be encoded in a 3SAT instance through a polynomial (in time and size)
process. This process is called a reduction. (The proof for this can be found in
any introductory theory of computation book.) The reduction being polynomial
is crucial, since if this is the case, a polynomial 3SAT algorithm could be used
to solve any other problem inNP in polynomial time. If the reduction itself does
not take polynomial time, then nothing can be determined. Thus a polynomial
time algorithm for solving 3SAT would allow allNP problems to be solved in
polynomial time. Such a problem (and there are many) for which a polynomial
time solution implies everyNP problem can be done in polynomial time is called
NP-complete.

Another problem in NP is Clique, the goal of which is to determine for an
input graphG and an integerk, if there is a set ofk vertices inG, each pair of
which have an edge between them. Figure 2 gives an example in which the largest
clique is of size 4, consisting of the set{C, D, F,G}. Thus the result would be
ACCEPT for anyk ≤ 4 and REJECT for anyk > 4.

Another simple problem on graphs is the Independent Set problem, which is
exactly like Clique, except that the set of vertices being sought should have no
edge between any pair of vertices in the set. The connection between the two is
that solving Independent Set is as simple as just flipping all the edges (adding any
edge that doesn’t exist and removing any that do) and then solving Clique on this
graph. Like 3SAT, both of these problems areNP-complete.

8

Figure 2: A sample Clique problem

2.5 Optimizations for NP Problems

The aboveNP-complete problems (and many others like them) seem to be very
difficult to solve, since no polynomial time algorithm has been found for any of
them. Notice though that all problems inNP are decision problems, the only an-
swers that are available are ACCEPT and REJECT. Most problems inNP have
a related optimization problem. We are interested in these optimizations because
they may have polynomial time solutions that guarantee a certain level of per-
formance. For 3SAT, the obvious optimization problem is to satisfy the largest
number of clauses (call this problem MAX-3SAT). For Clique it is to find the
largest clique in a graph (call this problem MAX-CLIQUE). The performance ra-
tio of a maximization optimization problem is defined to be the maximum value
of OPT (x)

c(x)
over all possible inputsx, wherec(x) is the cost function of the solution

found by an approximation algorithm andOPT (x) is the cost function of the op-
timal solution for the input. Naming this object the cost function makes it sound
complicated, but it is normally something quite simple. For example, in MAX-
3SAT it is the number of clauses satisfied. For MAX-CLIQUE it is the size of
the clique found. Clearly, no solution can do better than optimal, so this definition
makes all performance ratios≥ 1. SomeNP problems have an optimization that is
a minimization. The performance ratio for a minimization optimization problem
is defined as the maximum value ofc(x)

OPT (x)
, and is also≥ 1.

Unlike theNP decision problems, where there is a whole set of equivalentNP-
complete problems upon which research can be focused, optimization problems

9

have a much wider range of behavior and little correlation between one another.
For the most part, each optimization problem must be treated individually; con-
clusions about one do not apply to others.

Current research into these optimization problems indicates that they fall into
four main categories

i. Problems for which apoly (n) solution is known that achieves a ratio of 1.
Obviously these correspond to the classP and are of no further interest to
the discussion at hand.

ii. Problems for which apoly (n) solution can be found which achieves a per-
formance ratio of1 + ε for any ε > 0. Note that the value ofε affects the
complexity of the algorithm necessary to find the approximation. In gen-
eral, the smaller the value ofε, the higher the degree and/or coefficients of
the polynomial approximation algorithm that achieves the1+ε performance
ratio. A problem for which this is the case is said to have a polynomial time
approximation scheme (PTAS).

iii. Problems for which apoly (n) algorithm can be found that achieves a per-
formance ratio of1 + ε for anyε greater than some constantδ, δ > 0. But
for ε < δ no polynomial time algorithm exists.

iv. Problems for which nopoly (n) algorithm achieves a performance ratio of
1 + ε for any ε ≥ 0. This category can be further subdivided based on
looking at the performance measure as a function of input size. For ex-
ample, problems whose best algorithm can achieve a performance ratio of
O (log n), O (log log n), andO (

√
n) all fall in this category, but are very

different.

In terms of interesting proofs, categories one and two are fairly boring. All
that has to be done is to find an algorithm (for case 1), or an algorithm-creation al-
gorithm, which takesε and returns a polynomial algorithm with the desired perfor-
mance. In each case, these can be proved constructively. The last two categories
are much more interesting, since one must argue not just about the performance of
those algorithms that have been created, but also about all imaginable algorithms.
Showing which category a problem belongs to (and possibly findingδ in case 3) is
the problem of proving a lower bound for an approximation problem. The current
state of research in optimization problems is that for many problems we do not
have any lower bound, or we have only a lower bound that differs greatly from

10

the performance of the best known algorithm for the problem. Clearly, the best
situation is to have the two bounds (algorithmic and theoretical) agree, since at
this point we can stop looking for better algorithms. In order to do this, we must
first establish which category a problem falls in, then establish a lower bound. As
will be shown later in this paper,PCPs have in some instances been used to do
this.

3 Defining NP in terms of probability

In this section we will define classes of verifiers which can verify language mem-
bership proofs probabilistically, and then state that one of these classes is equiva-
lent toNP. The specific classes of verifiers under discussion are probabilistically
checkable proofs (PCPs).

3.1 Definition of PCP

PCPs are exactly what one might guess from their name, proof checking schemes
with randomness. As in the classic definition ofNP, PCP relies on verifiers which
are Turing machines. The machines that will be used have a few additions from
those described in the previous section.

A languageL is in PCP(q(n), r(n)) if it has a(q(n), r(n)) verifier. A veri-
fier V for this purpose is a polynomial time Turing machine with a few additions.
First, it has access (via another tape) to an infinite streamτ of random bits. Sec-
ondly, it has an oracle which takes as input a position in the proof and returns the
value of the bit of the proof at that position. Access to the oracle is controlled by
a third tape. The oracle here is not any sort of pseudo-magical question answering
device. All it does is access any location in the proof in constant time; doing this
is outside the normal model of a Turing machine. So from the point-of-view of the
Turing machine, the oracle is magic, but from our perspective what it is doing is
reasonable and straightforward. While adding two tapes may make a Turing ma-
chine seem much more powerful, it is an elementary result that multi-tape Turing
machines (such as this) are no more powerful than single tape Turing machines.
Figure 3 graphically displays a PCP verifier.

A verifier is (q(n), r(n)) if for all inputs of length n it reads at mostq(n)
random bits, and queries at mostr(n) bits of the proof. A verifier for a language
L must satisfy

11

Figure 3: A PCP Verifier

i. For all x ∈ L, there is a proofπx such that

Probq(n) [V ACCEPTS (x, τ, πx)] = 1,

ii. For all x /∈ L, for all proofsπ

Probq(n) [V ACCEPTS (x, τ, π)] < 1
2

The probability is taken over the uniform distribution of all possible binary
stringsτ of lengthq(n). Furthermore, the bits of the proofπ thatV queries depend
only onx andτ , not on any bits of the proof previously read. Note the similarity
between this and the classic deterministic verifiers forNP problems. The behavior
of the verifier works as follows. For all inputs in the language, there exists at least
one proof for which the verifier always accepts the input. This is exactly the same
as the classic deterministic verifiers. For inputs not in the language, or for proofs
not in the form the verifier expects, the verifier will reject the input at least half
the time.

12

Initially, it might seem that the oracle is unnecessary to read the proof. But in
fact it is critical if r(n) is to be sub-linear, since if the proofπ is just put on a tape
of the Turing machine, access to the last bit requires looking at (traversing over)
all bits before it and hence at the entire proof.

The idea behindPCPs is that for anyx ∈ L, assuming that we are using the
right proof format, the verifier will never reject the input. On the other hand, for
any ε > 0, a fixed number of runs of the verifier will reduce the probability of
an erroneous acceptance of any inputx /∈ L below ε. This number is given by⌈
log 1

2
ε
⌉
, but its value is not as important as the fact that it is fixed, regardless of

the input. In the same vein, the constant1
2

is not important, any constant< 1 will
do. The definition can be tweaked in other ways and remain equivalent, Arora [2]
presents several ways.

3.2 Extending NP to PCP: An obvious connection

Having definedPCPs and verifiers, there is an immediate connection that can be
made between the classic deterministic definition ofNP and expressing it using
PCPs, namely the following:

Theorem 3.1.NP⊆ PCP(1, poly (n))

Proof. Let L be any fixed language inNP andM its verifier as defined in the de-
terministic view ofNP. Then there is a proofπx for everyx ∈ L that is recognized
by M . Additionally, every proof forx /∈ L is rejected byM . By definition, the
total number of symbols in the proof isO (nc) for some constantc. Thus we can
construct aPCP verifier V from M by having it read zero random bits, copy the
proof onto its work tape, reposition back to the start position, and finally execute
M . This verifier then acceptsπx for x with probability 1 and accepts any proof
for x /∈ L with probability 0, clearly meeting the requirements for aPCPverifier.
SinceV can read no more than the total number of bits in the proof,V reads at
mostO (nc) bits. Thus L can be recognized by a(O (1) , O (nc)) verifier. Since L
is an arbitrary language inNP, NP⊆ PCP(1, poly (n)).

This definition is not particularly useful, since it establishes the relation in only
one direction. Additionally, it does not make any use of the probabilistic nature of
PCPs, or any of the parts that were added to the Turing machine. Since the power
of this new construct is not being used, it would be odd if there were results that
come out of this characterization ofNP that had not been found earlier using the

13

classic definition. And there are no such results. Fortunately, there is another way
to connectPCPs andNP, which does take into account the probabilistic backing
of PCPs.

3.3 The PCP Theorem: NP= PCP(log n, 1)

A more useful way to connectNP andPCP is by proving the following theorem.

Theorem 3.2.NP = PCP(log n, 1)

This is a surprising result, since it says that anyNP language has a verifier that
can look at a constant number of bits in the proof, and still reject invalid proofs
with a high probability, even for very large inputs. It seems very counterintuitive
that this can be done. Naively, one would expect that for some inputs, the required
proof must be quite large, and that by looking at only a constant number of bits,
you would still have no clue rather to accept or reject with any degree of certainty.

The proof of this result is not simple, but it is also not horribly complicated.
As stated by Arora [1], the proof does not involve anything significantly more
complicated than understanding that

A non-zero univariate polynomial of degreed has at mostd roots in a
field.

This is not a hard concept to understand, but its application to the proof is
not simple. This explains why the main part of Arora’s PhD thesis [1] spends 30
pages proving this theorem. Connecting together all of the details is no trivial
task. For the purposes of this paper we will takeNP = PCP(log n, 1) as given
and use this to show results about the approximation guarantees of any algorithm
for some problems inNP.

4 Applications of the PCP Theorem

Having defined the classic definition ofNP and the recent development ofPCP,
we are ready to move on to actually applying these concepts for the purpose of es-
tablishing some results about the approximability of certainNP problems. In this
section, we will use the PCP theorem to show which of the empirical categories
(as listed in 2.5) certainNP optimization problems fall within.

14

4.1 Establishing the Non-approximability of MAX-SNP prob-
lems

As a first application of thePCP theorem, we will show that a small group of
problems inNP do not have polynomial time approximation schemes (PTASs).
As mentioned previously, the optimization versions of mostNP problems are un-
related. The classMAX-SNP is a small set of problems for which the optimiza-
tion versions are related to a limited degree. In particular, if a given problemA
in MAX-SNP is reducible toB in MAX-SNP andB has no polynomial time
approximation algorithm with a performance ratio less than1 + ε, then theA has
no polynomial time approximation algorithm with a performance ratio less than
1+φ(ε). However, nothing is asserted about howφ maps values. The set ofMAX-
SNP problems is similar toNP in that there areMAX-SNP-complete problems
to which all othersMAX-SNP problems can be reduced. Because of these reduc-
tions, showing that there is oneMAX-SNP-complete problem that does not have
a PTAS shows that noMAX-SNP-complete problem can have a PTAS. In par-
ticular, MAX-3SAT as described earlier is aMAX-SNP-complete problem. We
will show that MAX-3SAT does not have a PTAS and hence that neither does any
MAX-SNP-complete problem. Hence allMAX-SNP-complete problems must
fall into category iii of the outline given in section 2.5.

Theorem 4.1.NoMAX-SNP-complete problem has a PTAS, unlessP = NP. 2

Proof. The proof of this is a simple argument by contradiction. We assume ini-
tially that P 6= NP and that there is a PTAS for MAX-3SAT. Then we argue that
the existence of a PTAS implies thatP = NP. As mentioned in the introduction,
P 6= NP is still an open question, so this (as in much theory of computation)
remains an assumption.

Take any arbitrary languageL in NP. By the PCP theorem (theorem 3.2), there
is a(log n, 1) verifier forL. Call this verifierV . Let Σ be the alphabet of symbols
for L. Using standard notation,Σ? is the set of all strings that contain only zero
or more elements ofΣ (the set of all strings that can be written withΣ).

For any stringx ∈ Σ?, we will construct a 3SAT instanceSx with two proper-
ties.

i. For anyx ∈ L, Sx will be satisfiable.

2This result is proved in Arora [1] Theorem 6.3, the presentation used here follows Hougardy
[3] Theorem 3.10

15

ii. For any x /∈ L, only a constant fractionδ of the clauses ofSx will be
satisfiable.

Now if a PTAS existed for MAX-3SAT, there would be a polynomial time al-
gorithm with a performance ratioζ < 1

δ
. Let the number of clauses inSx bek. For

anyx ∈ L, Sx is satisfiable, thus this algorithm must satisfyOPT (x)/csat(x) ≤ ζ,
or equivalently,csat(x) ≥ k

ζ
. Combining with the definition ofζ givescsat(x) >

kδ. On the other hand, forx /∈ L, the algorithm can return no more than optimal –
it satisfiescunsat(x) ≤ OPT (x) = kδ. Since the ranges ofcsat andcunsat are dis-
joint, L could be recognized in polynomial time. This contradicts the assumption
thatP 6= NP, and thus there must not be a PTAS for MAX-3SAT.

To complete this proof, we need only fill in the details about how to create
Sx. First, for any possible random stringτ provided to the verifier, letSτ be the
boolean formula that expresses which proofsπ are accepted byV on inputx,
encoding the bits by1 = TRUE and0 = FALSE. BecauseV queries only a
constant number of bits of the proof, each of the formulasSτ is bounded above in
size by a constant, regardless of the inputx. Let t be the total number of formulas
Sτ , of which there are no more than2O(log n) = O (nc) for somec (following
earlier notation,n is the size ofx).

Next, for eachSτ , let S̄τ beSτ written as a 3SAT formula. As stated earlier,
this can always be done. Lets be the maximum number of clauses that appear in
any S̄τ . The conversion from any boolean formula to 3SAT causes only a finite
increase in the size of the formula. Combined with the fact that the size of each
Sτ is bounded by a constant,s is also bounded by a constant regardless of input.

Finally, defineSx to be the conjunction of all̄Sτ . The size ofSx is bounded
by t · s, which combining the above, ispoly (n). Thus this encoding into a 3SAT
formula is polynomial in time and space, as required for a reduction.

We now need to show thatSx has the requisite properties. Forx ∈ L this is
easy. By the definition of the verifierV , there is a proofπx such that
V ACCEPTS(x, πx) for any random stringτ . This means thatπx is a satisfying
assignment for eachSτ . Thus it is a satisfying assignment forSx and henceSx is
satisfiable.

For x /∈ L the reasoning is harder, but not much. SinceV acceptsx at most
half the time for any proofπ, at most1

2
of the formulasS̄τ are simultaneously

satisfiable. At least one clause in each unsatisfiableS̄τ must be unsatisfiable for
this to be the case. Since there are at mostt · s total clauses, this gives at most
t·s− 1

2
t simultaneously satisfiable clauses inSx. The ratio between these is1− 1

2
1
s
,

which sinces is a constant, is a constant fraction< 1, as desired. This completes

16

the proof.

A few comments on this result are in order. For MAX-3SAT, the best approx-
imation algorithm (due to Karloff and Zwick [4]) achieves a performance ratio
of 8

7
, and it is also known that this is the best achievable. As mentioned earlier,

the reductions that allow otherMAX-SNP-complete problems to be reduced to
MAX-3SAT do not preserve this performance ratio in any nice way. To find the
optimum performance ratio for a given problem inMAX-SNP, two techniques are
available, neither of which is a mechanical process. One can either argue about
the problem using some other method, or carefully study the reduction from the
problem to aMAX-SNP problem with a known optimum performance ratio.

The use of the PCP theorem provides a clean, short proof of this theorem, but
it leaves a lot of questions unanswered about the practical level to which each
MAX-SNP problem can be approximated.

4.2 Clique Approximability

For a second application of the PCP Theorem, we will show that the MAX-
CLIQUE problem has no polynomial time algorithm which achieves a constant
performance ratio. Recall that this is the definition for category iv of the type
outlines given in section 2.5.

We begin with a less stringent theorem, which by itself only places MAX-
CLIQUE in category iii.

Theorem 4.2. MAX-CLIQUE cannot be approximated in polynomial time with a
performance ratio< 2, unlessP = NP. 3

Proof. As in the previous proof, we will show this by contradiction, first assuming
that P 6= NP, then show that a MAX-CLIQUE approximation algorithm with a
performance ratio less than 2 implies thatP = NP.

Let L be an arbitrary language inNP. Let the notationω(G) be the size of the
maximum clique in a graphG. Then for any inputx of lengthn, we will show
how to construct a graphGx such that for some functionf(n),

i. If x ∈ L, thenω(Gx) = f(n), and

ii. If x /∈ L, thenω(Gx) < 1
2
f(n)

3This proof follows Hougardy [3] Theorem 3.1

17

We begin by describing how to construct the graphGx. LetV be the(log n, 1)
PCP verifier forL. Let q(n) = O (logn) be the maximum number of random bits
used byV on inputs of size n. Letc (a constant) be the maximum number of bits
of a proof queried byV . The vertex set ofGx consists of all accepting runs ofV
for the inputx. Each of these can be described by a tuple of the random string
queried byV and the set of values it then reads from the proof. Thus each vertex
can be represented by a tuple〈τ, α1, α2, . . . , αc〉, whereτ is the random string
used byV andαi is the value of theith bit the verifier queried in the proof. Since
the length of the whole tuple is2O(logn) = O (nc) for some c, the size of the graph
Gx is polynomial in the size ofx. Checking whether a given tuple is a member of
the vertex set ofGx is very easy. Just runV with inputx and random stringτ , and
answers to the queries ofαi. By the definition of how a verifier works, we do not
even need the other bits of the proof, since the positions queried are fixed based
onx andτ .

Define two vertices〈τ, α1, α2, . . . , αc〉 and〈τ̄ , ᾱ1, ᾱ2, . . . , ᾱc〉 to have an edge
between them if there is some proofπ that is consistent with both tuples. Consis-
tent here means that the proof is accepted by the verifier for both random strings.
Thus if any of theαi andᾱi come from the same position in the proof, they must
have the same value. Since the verifier can be run in polynomial time for each
vertex pair, and the number of vertexes in the graph is polynomial in input size,
the total task of constructing the graph is polynomial in input size. This means we
have a polynomial time reduction from the inputx to the graphGx, as required
for a reduction inNP.

Next, observe thatGx is a2q(n)-partite graph. (A k-partite graph is one whose
vertex set can be split into k sets, such that within each set no two vertices share an
edge.) This is the case because no vertices whose tuple has the sameτ can share
an edge. Since there are2q(n) random stringsτ , the graph must be2q(n)-partite.

Now, for any fixed proofπ, any two vertices that are consistent withπ are by
definition adjacent. So for all proofsπ, we can conclude that

ω(Gx) ≥ number of random stringsτ for which V ACCEPTS (x, τ, π)

By definition, this is equal to2q(n) · Probq(n) [V ACCEPTS (x, τ, π)].
From the other side of the issue, consider a cliqueC in Gx. All vertices inC

which query a positionp of a proof must get the same answerα. Thus there must
be one proofπ0 that is consistent with all vertices ofC. So we conclude that

ω(Gx) ≤ number of random stringsτ for which V ACCEPTS (x, τ, π)

18

Combining the two inequalities just derived, we get

ω(Gx) = 2q(n) ·max
π

Probq(n) [V ACCEPTS (x, τ, π)]

where the max is taken over all proofsπ. Now for x ∈ L,

max
π

Probq(n) [V ACCEPTS (x, τ, π)] = 1

soω(Gx) = 2q(n). Forx /∈ L,

max
π

Probq(n) [V ACCEPTS (x, τ, π)] <
1

2

so ω(Gx) = 2q(n)

2
. (The functionf(n) mentioned at the beginning of the proof

is obviously2q(n)). Thus if MAX-CLIQUE could be approximated to within a
factor of 2, we could use that algorithm to recognizeL in polynomial time. Since
L can be anyNP-complete language, this brings about a contradiction. As in the
previous proof, we are forced to conclude that MAX-CLIQUE does not have a
polynomial time approximation with performance ratio less than 2 (assuming as
always thatP 6= NP).

Corollary 4.3. MAX-CLIQUE cannot be approximated in polynomial time for
any constant performance ratio, unlessP = NP.

Proof. The step from the last proof to this one is simple. In the definition of the
class PCP given earlier, it was noted that the constant1

2
for x /∈ L was unimpor-

tant, any constant is just as valid. If instead of choosing1
2

we choose anyε, then
in the above proof we can replace the constant factor that MAX-CLIQUE can not
be approximated to by1

ε
. Since we can chooseε arbitrarily small, MAX-CLIQUE

can not be approximated in polynomial time for any constant performance ra-
tio.

The difference between this problem and the one for theorem 4.1 is that here
we have control over the magnitude of the factor that appears in front off(n) for
x /∈ L. While in theorem 4.1, we could only prove the existence of such a gap and
not control its magnitude. This explains why the proofs (which in a general sense
are the same) have such a different outcome.

19

5 Conclusion

The development ofPCPs and the PCP Theorem has led to a substantial im-
provements in placing bounds on approximation algorithms, and even, although
it was not shown in this paper, for inventing algorithms. However, the field of
approximation algorithms is still rife with open questions, and for the invention of
techniques that can be applied more generally.PCPs take a step in this direction,
but they will not be the last word in this area.

References

[1] A RORA, S. Probabilistic checking of proofs and hardness of approximation
problems. PhD thesis, UC Berkeley, 1994.

[2] A RORA, S. The approximability of NP-hard problems. InSTOC(1998),
pp. 337–348.

[3] HOUGARDY, S., PRMEL, H. J., AND STEGER, A. Probabilistically check-
able proofs and their consequences for approximation algorithms.Discrete
Mathematics 136(1994), 173–223.

[4] K ARLOFF, H., AND ZWICK , U. A 7/8-approximation algorithm for MAX
3SAT? InProceedings of the 38th Annual IEEE Symposium on Foundations
of Computer Science, Miami Beach, FL, USA(1997), IEEE Press.

20

