Math 336 Sample Problems

One notebook sized page of notes will be allowed on the test. The test will cover up to section 2.6 in the text.

- 1. Suppose that v is the harmonic conjugate of u and u is the harmonic conjugate of v. Show that u and v must be constant.
- 2. Let a and c be real constants and let b be a complex constant. Suppose $a \neq 0$). Prove that $az\bar{z} + \bar{b}z + b\bar{z} + c = 0$ is the equation of a circle. Find its center and radius.
- 3. Let f(z) = u(x, y) + iv(x, y) (where z = x + iy) be an analytic function. Let $\alpha = (\cos \phi, \sin \phi)$ and $\beta = (-\sin \phi, \cos \phi)$.
 - (a) Write a formula for the directional derivative $\frac{\partial u}{\partial \alpha}$ in terms of the components of α and the partial derivatives of u. Do the same for $\frac{\partial v}{\partial \beta}$.
 - (b) Using the Cauchy-Riemann equations, show that

$$\frac{\partial u}{\partial \alpha} = \frac{\partial v}{\partial \beta}.$$

By a similar calculation show that

$$\frac{\partial u}{\partial \beta} = -\frac{\partial v}{\partial \alpha}.$$

(c) Suppose that u and v are functions that satisfy the equations of part (b) for a fixed φ. Using those equations alone, show that u and v satisfy the Cauchy-Riemann equations (for partials with respect to x and y).

- 4. Let $z_j = e^{\frac{2\pi i j}{n}}$ denote the *n* roots of unity. Let $c_j = |1 z_j|$ be the n-1 chord lengths from 1 to the points $z_j, j = 1, \ldots, n-1$. Prove that the product $c_1 \cdot c_2 \cdots c_{n-1} = n$. Hint: Consider $z^n 1$.
- 5. Let $f(z) = \cos x + i \sin y$. Find the points at which f is complex differentiable. Find the points at which f is complex analytic.
- 6. Find the Laurent series of the function $\frac{1}{z-2}$ in the annulus $D = \{z : 1 < |z-1| < \infty\}$.
- 7. Using the calculus of residues, compute

$$\int_{-\infty}^{\infty} \frac{1}{x^2 + 2x + 3} dx$$

8. (a) Prove that

$$\frac{1}{(1-z)^{k+1}} = \sum_{n=0}^{\infty} \binom{n+k}{k} z^n$$

- (b) What is the radius of convergence of the series in part (a)?
- 9. Let $f(z) = \frac{p'(z)}{zp(z)}$, where $p(z) = \prod_{j=1}^{n} (z z_j)$ and the z_j are distinct and different from 0. Find all the poles of f and compute the residues of f at these poles.
- 10. Let f be analytic within and on a simple closed curve Γ . Prove that $Re(\int_{\Gamma} \bar{f}(z)f'(z)dz) = 0.$
- 11. Compute $\int_{|z|=r} \frac{|dz|}{|z-a|^2}$, where $|a| \neq r$. Use the fact that on $\{|z| = r\}$, $|dz| = -ir\frac{dz}{z}$, and then use the Cauchy integral formula.

- 12. You will need to know the definitions of the following terms and statements of the following theorems.
 - 1. Absolute Value (Modulus) and Argument of a complex number
 - 2. $\lim_{z\to a} f(z)$
 - 3. Continuity
 - 4. Complex Derivative
 - 5. Cauchy-Riemann equations
 - 6. Harmonic Conjugate
 - 7. Complex Analytic
 - 8. Differentiability of Power Series
 - 9. Complex Exponential Function
 - 10. Complex Logarithm
 - 11. Cauchy's Integral Theorem
 - 12. Cauchy's Integral Formula
 - 13. Morera's Theorem
 - 14. Liouville's Theorem
 - 15. Isolated Singularities (types)
 - 16. Residues
 - 17. Residue Theorem
 - 18. Laurent Series
- 13. There may be homework problems or example problems from the text on the midterm.