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Vi, RY, I and D; D} for all . Hence D; & R(G) and D: & R(G). Finally HR?=V
=RH. But H#V% Ri, D}, D%, I and R*s«H' for all 4. Hence H&R(G). Thus
AC(G): I, R, R?, and R3.

The converses of Theorem 2 and Theorem 4 are false as Example 2 indicates.
Finally the A C(G) is, in general nontrivial, as is demonstrated by Example 3.

In a later paper, the author hopes to obtain results concerning G/A4C(G),
some relations between the center and the anticenter, and to explore more fully
the effect of isomorphism and homomorphism on the anticenter.
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Epitep By C. O. OARLEY, Haverford College

All material for this department should be sent to C. O. Oakley, Department of Mathe-
matics, Haverford College, Haverford, Pa.

A DERIVATION OF #-DIMENSIONAL SPHERICAL COORDINATES

L. E. BLuMeNsoN, Columbia University Electronics Research Laboratories

An instructive example in linear algebra is the derivation of #-dimensional
spherical coordinates without appealing to geometric intuition. The method of
derivation is based on concepts from linear algebra; namely, bases of a vector
space, scalar product, angle between vectors and projection of a vector onto a
subspace. Spherical coordinates in z-dimensions are a generalization of the usual
three-dimensional spherical coordinates and are particularly useful in evaluating
certain integrals taken over the surface of an n-dimensional sphere. Later we
shall give an example of such an integration.

Let E, denote real n-dimensional euclidean space. Vectors in E, will be de-
noted by bold-faced letters. If x and y are two vectors in E, with components

¢;andn;, j=1, - - -, n, respectively, we define the scalar product of x and y by
Xy= Z Emj.
j=1

The nonnegative number [|x” =(x-x)'/2? is called the norm of x. The angle be-
tween x and y is defined by cos ¢=x-y/||x||||y||, where ¢ is restricted to the
range 0S¢ =<w. A set of vectors X, - - -, X, is an orthonormal set in E, if
X;-X;=0 or 1 accordingly as 7% or 2=j3. Any set of # orthonormal vectors forms
a basis for E,.
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Let ey, - -+ -, €, be any orthonormal basis in E,. Let x be any vector on the
n-dimensional sphere of radius 7 about the origin, that is, ||x|| =7. If x= D%, e
then ||x]|2= D%, &. If §; is the angle between x and e; then £;=x-e;=7 cos 0.
Hence x= D_*_, 7 cos f;¢; and x can be specified by giving its length 7 and the n
angles 6;. But since 7?=x-x=r2 ), cos?; we see that the §; are not independ-
ent of each other. Spherical coordinates in #-dimensions show us how to pick
out #—1 angles ¢y, - - -, pn—2, § which are independent of each other and which,
when combined with the norm 7, completely describe the vector x with respect
to the given orthonormal basis.

Derivation of the coordinates. Let e;, - - - , e, and x be as above. Let ¢; be
the angle between x and e;, 0=<¢; <w. Then & =x-e;=r cos ¢; and

n
X = 7 cos ¢:€1 + 2 £

j=2
Now
2 2 2 2 2, .2 2. .2 2, 2
r =”x” =7 cos g1+ D & or Z£j= r sin ¢1.
j=2 j=2
Setting &;=a;r sin ¢1, j=2, + -+ -+, n, we have

n
X = 7 Cos $1€1 + 7 sin 1 D ase;,
=2
where D "_,a?=1. (If ¢, is 0 or 7, then x= +re,.)
Let uz= ) ., aje;. The vector u, is a unit vector (that is |[us]| =1) in the
direction of the projection of x onto the (#z—1)-dimensional subspace spanned

by es, - - -, €, If ¢ is the angle between u, and e; then cos ¢a=u,:€2=0w,
0=¢y=w, and
n
Up = COS ¢ps€2 -+ E o€;.
J=3
Hence,
2 2 2. 2 2, 2 .2
1= HU2” =cos ¢p2+ D, @ or D, a=sin ¢
=3 3
If we set a;=p; sin ¢ps, j=3, - - -, n, then

n
Uz = COS 282 -+ sin ¢ E Bi€i

ju3

where Y "5 82=1. Thus

n
X = 7 COS ¢1€1 -} 7 sin ¢; COS Pps€g 1+ 7 sin ¢; sin @2 Z Bie;.
i=3
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In general, let u; be the unit vector in the direction of the projection of x

onto the space spanned by e;, €41, * * +, €, =2, -+, n—1 and let ¢;; be
the angle between u; and ¢;, 0=<¢;=<m, j=2, - - -, —1. Then
n—2 E/ j—1 n—2
X= ). r < 11 sin ¢k> cos ¢je; + r( I1sin ¢k> Un1.
i=1 k=1 k=1

Now u,_1=0,_1€,_1+}0.e,, where 1 =”un_1||2= 82_1+62. If now we define an
angle 6 by cos 0 =4,, sin #=6,_;, we see that 0 <60 <= will not suffice since §,_;
can be negative and sin &2 0 for 0 <8 <. In order to include all possible combi-
nations of (6,1, 6,) we must have 0 <6 < 2.

Thus if €5, - - -, e, is a given orthonormal basis in E, and x is a vector of
norm 7 with components £; with respect to this basis, then

§1 = 7 cos ¢y,

-1
& =rcosg; [ sin g G=2--,n—2),
k=1
*) n—2
( En—l =7 sin 0 II sin br,
=1 il

]

n—2

¥
&= r cos 0 [[Fsin ¢,
k=1

where 0=¢; =7, j=1, -, 2—2;050<21; 0Sr< .

Application to integration. Let f(&, - - -, £.) be a continuous real-valued
function defined in E, which may be written in the form

FE -y b)) = gl 4 -+ -+ oy B+ - - + ),

where the «; are constants independent of the £’s. We wish to compute the in-
tegral of f over the surface of the n-dimensional sphere of radius  with the origin
as center. If x is the vector with coordinates £; and a the vector with coordinates
o; (these coordinates being with respect to some given orthonormal basis
e, -, e, then

\l‘ﬂ £2 2f(él7 s E)dS = g(a-x, ||x”2)d5’
14t

ot |zl l=r
where d.S is the surface differential.
Let a;=a/ Ha”* and choose vectors as, - - +, 4, to complete an orthonormal

basis in E,. Let the coordinates of x with respect to the basis a;, + - -, a, be
¢, **, n. Then a;-x={;. Make the spherical coordinate transformation

* If a=0, then a; may be any unit vector.
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given by (*) with ; replaced by {;, =1, - - -, n.
The Jacobian of the transformation is
n—2
J = 1]] sin* ¢p_1s.
k=1

Also, a;-x={1=7 cos ¢1. Thus the integral becomes

n—3 T T
21rr"—1|: sin® ¢,,_1-kd¢n_1_k] f g(||all7 cos @1, #?) sin"2 pdg;
0 0

k=1
2rn—17r(n-—l)/2 T

T T - 1)/,

Thus we have reduced the integral over the surface of an #-dimensional
sphere to a single integral on the real line. In particular, if f=1, we obtain
[277/2/T (n/2) ]r*=1 for the surface area of an #-dimensional sphere of radius 7
and, integrating from 0 to 7, we obtain [277/2/(nI'(n/2)) ]#* for the volume of the
sphere.

g(”a”r cos ¢1, 7?) sin" 2 ¢1d¢;.

MATRIX INTEGRATION OF x* exp (—f3%?)
Roscoe B. WHITE, University of Minnesota

Let V be the vector space of finite linear combinations of x* exp (—f3%?2),
fixed 8, k=0, 1, - - -, with basis {x" exp (—B2%?) } .Let D be a linear transforma-
tion on V which differentiates a vector belonging to V.

Since (x* exp (—pB%?))D = kx*~1exp (—B%2) — 232+ exp (—B2%x?), the matrix
of D is

0 — 282 . . e 0 cT
1 0 —2p2
2 0 —2p2
0 k 0 —23?
| 0 . . . ——

V is closed under D and the kernel of D consists of the zero vector alone. The
calculation of D~! may be carried out algebraically, giving an interesting equa-
tion for [x* exp (—B%?)dx.

Because of the nature of D, D~! may be calculated in four independent
steps depending on whether % and j are even or odd, where || D=Y|| =||as;||. Using
DD~'=1, we obtain the following expressions for ay;.

(1) 7 odd, % odd: a; = 0;
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