Theorem 1. \(\text{Let } S_k \text{ be a decreasing sequence of non-empty compact sets } (S_{k+1} \subset S_k). \text{ Then } \cap S_k \neq \emptyset. \)

Proof. Let \(x_k \in S_k \). Then \(x_k \in S_1 \) for all \(k \). Hence there is a subsequence \(x_{k_j} \) that converges to a point \(a \in S_1 \). But ultimately all points of \(\{x_{k_j} : j \geq N\} \) are in \(S_i \) for each fixed \(i \). Since \(S_i \) is compact, \(a \in S_i \).

This is true for all \(i \), so \(a \in \cap S_i \neq \emptyset. \)

Corollary 1. If \(S_j \) is a decreasing sequence of compact sets and \(\cap \cap S_j = \emptyset \) then \(S_j = \emptyset \) for some \(j \).