Closed and Exact

The words closed and exact have many meanings. I will make up some terms that are private for this class.

Definition 1. A vector field \mathbf{F} is curl-closed if $\operatorname{curl}(\mathbf{F})=0 . \mathbf{F}$ is gradient-exact if $\mathbf{F}=\operatorname{grad}(f) . \mathbf{F}$ is div-closed if $\operatorname{div}(\mathbf{F})=0 . \mathbf{F}$ is curl-exact if $\mathbf{F}=\operatorname{curl}(\mathbf{G})$.

Theorem 1. On a box with faces parallel to the axis planes,

$$
\begin{align*}
\text { curl-closed } & \Longleftrightarrow \text { gradient-exact, } \tag{1}\\
\text { div-closed } & \Longleftrightarrow \text { curl-exact. } \tag{2}
\end{align*}
$$

Proof. I will only prove statement (2).
First, if $\mathbf{F}=\operatorname{curl}(\mathbf{G})$ where $\mathbf{G}=(U, V, W)$. Then

$$
\begin{align*}
\operatorname{div}(\mathbf{F}) & =\left(W_{y}-V_{z}\right)_{x}-\left(W_{x}-U_{z}\right)_{y}+\left(V_{x}-U_{y}\right)_{z} \tag{3}\\
& =0 . \tag{4}
\end{align*}
$$

Next let $\mathbf{F}=(P, Q, R)$ and suppose $P_{x}+Q_{y}+R_{z}=0$. Suppose there is vector field $\mathbf{G}=(U, V, W)$ so that $\mathbf{F}=\operatorname{curl}(\mathbf{G})$. If we add $\operatorname{grad}(f)$ to \mathbf{G} then since $\operatorname{curl}(\operatorname{grad}(f))=0$, it is still true that $\mathbf{F}=\operatorname{curl}(\mathbf{G})$. Now we can always choose f so that $f_{z}=-W$, in which case the z-component of $\mathbf{G}+\operatorname{grad}(f)$ is 0 . In other words we can assume that $W=0$. Now our requirements become

$$
\begin{align*}
& P=-V_{z}, \tag{5}\\
& Q=U_{z}, \tag{6}\\
& R=V_{x}-U_{y} . \tag{7}
\end{align*}
$$

We solve the first two equations by taking any z-antiderivative of $-P$ for V and any z-antiderivative of Q for U. In symbolic form

$$
\begin{align*}
& V(x, y, z)=-\int_{z_{0}}^{z} P(x, y, t) d t+\phi(x, y), \tag{8}\\
& U(x, y, z)=\int_{z_{0}}^{z} Q(x, y, t) d t+\psi(x, y) . \tag{9}
\end{align*}
$$

Where we have let $\phi(x, y)=V\left(x, y, z_{0}\right)$ and $\psi(x, y)=U\left(x, y, z_{0}\right)$. We can do this on a box. Now we need to solve (7). But (7) is

$$
\begin{align*}
R(x, y, z) & =-\int_{z_{0}}^{z}\left(Q_{y}+P_{x}\right) d t+\phi_{x}-\psi_{y} \tag{10}\\
& =R(x, y, z)-R\left(x, y, z_{0}\right)+\phi_{x}-\psi_{y} . \tag{11}
\end{align*}
$$

We can solve this equation by letting $\psi=0$ and chosing any solution of $\phi_{x}(x, y)=R\left(x, y, z_{0}\right)$.

Example :

Let $\mathbf{F}=\left(3 x^{2} y,-x y^{2},-4 x y z\right)$. Then check that $\operatorname{div}(\mathbf{F})=0$. Equations 5,6,7 become

$$
\begin{align*}
3 x^{2} y & =-V_{z} \tag{12}\\
-x y^{2} & =U_{z} \tag{13}\\
-4 x y z & =V_{x}-U_{y} \tag{14}
\end{align*}
$$

Following the proof of the theorem we find that

$$
\begin{align*}
U & =-z x y^{2}+\phi(x, y) \tag{15}\\
V & =-3 x^{2} y z+\psi(x, y) \tag{16}
\end{align*}
$$

Let $\psi=0$ and then find that equation 14 is

$$
-\phi_{y}=0
$$

so we also choose $\phi=0$. The solution is then

$$
\begin{align*}
U & =-z x y^{2} \tag{17}\\
V & =-3 x^{2} y z \tag{18}\\
W & =0 \tag{19}
\end{align*}
$$

