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A~ 
In [1] we presented a geometric theory of the area of non- 

parametric surfaces. We showed that  this theory is equivalent to 
the analytic theory of LEBESOUE for such surfaces. In the present 
paper we extend this geometric theory to triangulable parametric 
surfaces. Since every surface may be thought of as a parametric 
surface and as one may  expect that  the transition from triangulable 
surfaces to non-triangulable ones may  be made by  a limit process, 
the present theory may  be considered as an introduction to a 
general geometric theory of surface area. 

We shall use the term parametri~ surface to mean the locus in 
d ~z of a system of simultaneous equations x=f(u,v) ,  g=g(u,v), 
z =-h(u,v), these functions being defined and continuous on E, a 
closed set in the ~ v plane consisting of the interior and the boundary 
of a closed simple polygon, this set being a minimal preimage of 
the given surface. We shall make use of triangular polyhedra 
inscribed in the given surface and such that  every face of the 
polyhedra has an angle which lies between a prescribed angle 
and ~r--~, 0 < q  < ~ .  We refer to such polyhedra as admissible 
polyhedra. However, since we limit our discussions to such poly- 
hedra, we shall omit the term ,,admissible", except when we wish 
to make special emphasis of it. 

These polyhedra have a finite number of faces. By  the area 
of such a polyhedron, we mean the sum of the areas of its faces. 
We shall index these faces and thus write T1, T2,...,T~ for the 
faces of a polyhedron. 
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Definitions: 

1. A triangle T C ~3 is said to be inscribed in a surface S if its 
three vertices all lie in S. A p o l y h e d r o n / / i s  said to be inscribed 
in S, if all of its faces (closed triangles) are inscribed in S. 

2. Let H be inscribed in S. Let T be a face o f / / .  By  P~y(T), 
we shall mean the orthogonal projection of T on the xy coordinate 
plane. We define Pxy(T) and Py~(T) similarly. By  Sxy(T) we shall 
mean a maximal connected subset of S whose orthogonal projection 
on the xy plane is a subset of Pxy(T) and which, moreover, has 
the property that  no two distinct points of Sxy(T) have identical 
projection points on the xy plane. I t  is seen that  for each inscribed 
triangle T, there may be arbitrarily associated a single Sxy(T), or 
a finite or even a countably infinite set of Sxy(T). We shall denote 
the union of this set by  S~y*(T). We define Sxz(T), Sxz*(T), 
Syz(T) and S~z*(T) similarly. We refer to S~y*(T)wS~z*(T) 
wSy~*(T) as a portion of S which is subtended by  the inscribed 

triangle T. By Pxy(II) we shall mean Pxy(T1)wPxy(T2)u... 
WPxy(Tn), when the faces of H are T1, Te,'",Tn. We define 
Pxz(//) and Pvz(II) similarly. By  Sxv*(II) we m e a n  Sxy*(T1) w 
wSxv*(Te) ~)'" wSxy*(Tn). We define Szz*(//) and Sv~*(H ) 

similarly. 

3. I f  

a) S~y*(//) u&~*(H) uSy,*(//)=S and 
b) the set {Sxy*(T1),Sxy*(T2),'",Sxy*(Yn)} is disjoint except for 
boundary points; the set {Sx~*(T1),S~*(T2),'..,Sxz*(Tn)} is dis- 
joint except for boundary points; the set {Suz*(T1),Syz*(T2),..., 
Suz* (Tn)} is disjoint except for boundary points, then we say that  
/ / i s  inscribed on the surface S. By the decomposition norm of a 
polyhedron H inscribed on S we shall mean the greatest of the 
diameters of its faces. 

A surface S is said to be triangulable at a given point QeS if 
for every ball S (Q, e) there exists an admissible triangle T C S (Q, e) 
which is inscribed in S. A surface S is  said to be triangulable if it 
is triangulable at  each of its points. In this paper we shall confine 
ourselves to such surfaces. 

4. Let  T be a face of a po lyhedron/ / inscr ibed  on S. By Bxy(T) 
we mean the area of Pxy(T). We define Bxz(Y) and B~z(T) 
similarly. Let  B~y(//) = B~y(T1) -k Bxu(T2) -k"" -k Bxy(T~). We 
define B~z(//) and By~(H) similarly. If, for M1 polyhedra H that  

5* 
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may be inscribed on S, the sets {all Bxu(//)}, {all Bxz(H)} and 
(all Byz(H)} are each bounded, then we say tha t  S is tame. In  this 
case, we designate the LUB of {all Bxy(//)} by Bxy(S). We define 
Bxz(S) and Byz(S) similarly. We designate the sum Bxy(S)-}- 

Bxz(S) ~ Byz(S) by B and call it the base area of S. 
I t  is easy to see [2] tha t  if S is not tame, then its Lebesgue 

area is infinite. In  the sequel we shall confine ourselves to tame 
triangulable surfaces. 

5. Let T be a face of a polyhedron H inscribed on S. By D(T), 
the deviation on T, we mean the LUB of the set of the acute angles 
between the normal to T and the normals to the admissible triangles 
which may be inscribed in Sxy*(T) wSxz*(T) w8yz*(T). 

6. Let H be a polyhedron inscribed on S. By D (//), the deviation 
norm of H, we mean the largest of the deviations on its faces. 

7. Let  QeS. By D(Q), the deviation at Q, we mean the GLB 
of the set {D (T)}, T any admissible triangle which may be inscribed 
in the intersection of S and a ball S(Q,e), e >0 .  Since we are deal- 
ing exclusively with triangulable surfaces, D (Q) is defined at every 
point of S. 

8. S is said to be l~iecewise fiat if for every e > 0, there exists an 
admissible polyhedron H inscribed on S such tha t  the deviation 
norm o f / / i s  less than e. 

I t  is clear tha t  if S is piecewisc flat then there exists a sequence 
(H1,H2," ")  of admissible polyhedra inscribed on S such tha t  the 
corresponding sequence (NI,iV2,'") of the deviation norms con- 
verges to zero. We shall call the sequence (111,112,.") a regular 
sequence of inscribed polyhedra. 

9. S is said to be quasi-piecewise fiat (qpf) if for every ~ > 0 
and every fl > 0, there exists a polyhedron H inscribed on S such 
tha t  
(a) for each of some of the faces of H (the so-called a-regular faces 
of H), the deviation is less than ~ and 
(b) the sum of the areas of the faces of H on which the deviations 
are not less than  ~, is less than fl. 

I t  is clear tha t  if S is qpf then there exists a sequence 
( / /1 , / /2 ,"  ") ofpolyhedra inscribed on S such tha t  the corresponding 
sequences (al ,u2, '")  and (fil, fl~,-..) both converge to zero. We 
shall also call such a sequence (II1,112,...) a regular sequence of 
inscribed polyhedra. 
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10. Let o:,fl, y be the direction angles of a vector in #~. Since 
cos2e+cos2fl+eos2~-----1, it follows tha t  one of the coordinate 
axes makes with the given vector an acute angle which is no larger 

than ~*=-arecos l/V3. Thus, for every plane in #3, one of the 
coordinate planes makes with this plane a dihedral angle which is 
less than or equal to ~*. 

Let S be qpf and (HI, H2," ')  be a regular sequence of poly- 
hedra inscribed on S. Consider, in succession, the faces Tnl, Tn2, 
�9 " ", Tnmn of Hn. For each Tni there exists a coordinate plane which 
makes with Tni a dihedral angle 0 < ~*. As one runs through the 
sequence (Tnl, The,. . . ,  Tnm~), select the faces which make with the 
xy  plane angles 0 < ~*. We denote the set of these faces Fnxy. 
We define the sets Fnxz and Fnyz similarly. One can make further 
selections so that  these three sets are disjoint. 

Consider the sequences 

//~, H~+I,"" 

Fn~y~ F(u+l)xy,""  

-~'n yz, F(n+l) yz, " " 

Fnx~, ~(n+l)xz,''" 

The sequence (Fnzy, F(n+l)xu,"') is a sequence of polyhedra 
inscribed in S, for which the angle between the z-axis and the nor- 
mal to each face of each polyhedron is less than or equal to ~*. 
(Fn~u,F(n+l)zy,'") is a strongly regular sequence of inscribed 
polyhedra in the sense of [1]. Similarly, (Fnxz, F(n+l)xz,'") and 
(Fnyz, F(~+l)uz,'") are strongly regular sequences of polyhedra 
inscribed in S. 

11. Given a po lyhedron/ / inscr ibed  on S, by a refinement of H 
we mean a polyhedron H* also inscribed on S such tha t  every 
vertex of H is also a vertex of H*. 

Given two polyhedra / /1  a n d / / 2  both inscribed on S, one may 
construct a common refinement II* o f / / 1  and H~ in the following 
manner: 

Project on the x y  plane the vertices of the set Fnxy, n =  1,2, 
"",rim1 and the vertices Fuxy, n =  1,2,'",nm~ of / /2 .  These points 
on the xy  plane with the addition, ff necessary, of a set of well 
chosen points (see [1]) on the xy  plane determine an admissible 
polyhedron inscribed on the portion of S which is subtended by the 
union of the F .~y  of / /1  and the 2' ,xy of//2. Project on the xz plane 
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the vertices of the Fn~z o f / / 1  and the vertices of the Fnxz o f / / 2  
and proceed in like manner. Project on the yz  plane the vertices 
of the Fnyz o f / / 1  and also the vertices of Fnyz of He and proceed 
in like manner. This procedure leads to the construction of a third 
admissible polyhedron H* inscribed on S which is a common 
refinement of Hi  and/ /~ .  

B. We now state 

Theorem 1. 
Let S be such that D(Q) ---0 for every QeS. Then there exists a 

sequence (II1,//2,'") of polyhedra inscribed on S such that the cor- 
responding sequence (N1, N2,...) of deviation norms converges to zero. 
For all such sequences of polyhedra inscribed on S, the corresponding 
sequence (A1,A2,'") of the polyhedral areas converges to a unique 
real number. This is independent of the admissibility number qJ. 
Proof: 

Let  e > 0  be given. For  each QES there exists a ball S(Q,6) 
such that,  ff T1 and T~ are any two triangles inscribed in S mS(Q, (~), 
then the dihedral angle between T1 and T~ is less than e/2. Associate 
to the point Q the ball S(Q,(5/2)). Letting Q run over S gives us 
a covering/~ of S. Since S is compact, there exists a finite sub- 
covering F* of S. Using this covering F* we obtain a po l yhed ron / /  
inscribed on S such that  the deviation norm o f / / i s  less than e. 
By  considering a sequence (el, e2," "') which converges to zero, we 
obtain a sequence (//1,//2,.. .) of polyhedra inscribed on S such that  
the corresponding sequence of the deviation norms converges to 
zero .  

To show that  the corresponding sequence of the polyhedral 
areas converges to a unique real number, we make use of  two 
lemmas. 

Lemma 1. 
Let (/ /1,/ /2, '") be a sequence of polyhedra inscribed on S such 

that the corresponding sequence (N1,N2,...) of the deviation norms 
converges to zero. There exists a positive integer N such that, i f  
n :>N, then ~n ~ �89 Let n :>IV. Let T be any face of the 
Fnxy of IIu. Let ]c be any refinement of T. Let 0 denote the acute angle 
between the z-axis and the normal to T. Then there exists a positive 
constant M(xy)~ such that I seeO-- see Ol I ~ M(~y)lvlO--Oi I, where O~ 
is the acute angle between the z-axis and the normal to any face T~ 

of~. 
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Proof: 
0 .< and < sec0 is 

uniformly Lipschitzian on the closed interval [~*--�89 
+ 

Lemma 2. 

Let T be any o:•-regular face of the Fxy of Tin, n > N, as in 
Lemma 1. Let K be any refinement of T. Let the faces of K be 
T1, T2,-'-, Tnm and let their respective areas be A1,A2,'",Anm. Let 
axy denote the area of Pxy(T)  and a(xy)~ the area of Pxy(T~). Let A 
denote the area of T and let A * : A I - f - A ~ + ' " + A n m .  Then 
I A - - A *  I < axyM(~y)iv~n. 

Proof: 

A* = -  a(xy) l sec 01 -I- . . .  ~- a(xy) n,n sec Onm 

A = a(xy)lsecO -~- "" -~- a(xy)nmSeCO 

] A - -  A* I ~< a(~ y) 1 1 sec O--  sec 011 - F " "  + a(~y) nm I sec 0 - -  sec 0~,,~ ] 

< a(xy) 1 M(xy)ivo~n -~ "'" -~ a(xy) nm M(xy) lV o~n 

< axy M(x y) iv ~n. 

If, in the above lemmas, we had considered a face T in the Fx~ 
o f / / ,  we would have arrived at the same results with M(xz)~v and 
ax~ instead of M(zu)iv and axu, respectively. Had  we considered a 
face T in the Fyz of H, we would have arrived at similar results. 
Let  Miv denote the greatest of M(xy)iv, M(~z)iv and M(u~)zr 

Corollary 1. 
Let n > N as in Lemma 1. Let IIn* be any refinement of Tin. 

Let An denote the sum of the areas of the faces of Tin and An* the 
sum of the areas of the faces of IIn* which are subtended by the faces 
of lIn. Then IAn- -An*  ] < MnB~n.  

We now proceed to the proof of Theorem 1. 
Let  e > 0 be given. There exists a positive integer N such if 

n > N ,  then gn<(~/4MivB). Let nl > N  and n2 > N .  Le t / / iv*  be 
a common refinement of Tin~ and Tin~. Let  An~, An~ and Aiv* be the 
areas of Tin1, IIn2 and //iv*, respectively. Then ]Anl- -Azr  
< (el4MivB) �9 MivB : -  (el4). Similarly IAn2--Aiv*l < (el4). Hence 
]An~--An2] <(e/2).  Thus the sequence (A1,A~,..-) converges to a 
unique real number. I t  is easy to see that  the sequential limit is 
independent of the particular admissibility number. 
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Corollary 2. 

Let S be piecewise fiat. Let (HI,H2, '")  be a regular sequence of 
polyhedra inscribed on S. Then the corresponding sequence 
(A1, A2 . . . .  ) of the polyhedral areas converges to a unique real number. 

Definition. 

Let S be qpf. S is said to be sqpf (strongly quasipiecewise fiat) 
if there exists a sequence of polyhedra (II1,II~,.. .)inscribed on S 
such that,  for each n, in addition to conditions 9 (a) and 9 (b) above, 
the dihedral angle between any of the ~-irregular faces of Hn and 
any refinement of such a face has an upper bound which is less 
than (~/2). We shall refer to such a sequence of polyhedra as a 
strongly regular sequence. 

Theorem 2. 

Let S be sqpf. Let (II1,112 . . . .  ) be a strongly regular sequence of 
polyhedra inscribed on S. Then the corresponding sequence 
(A1, A2 ,"  ") of the polyhedral areas converges to a unique rear number. 

Proof: 

The secants of the dihedrM angles referred to in the above 
definition are bounded. Let  m denote the upper bound of these 
secants. The proof is now essentially the same as tha t  of Theorem 1 
of [1]. 

C~ 

We now describe the analytic significance of D ( Q ) = 0 ,  QeS.  
Let S = F (E), E satisfying the conditions stated at the beginn- 

ing of Section A. 
Set D ( Q ) = 0 .  Let P e E  such tha t  Q = F ( P ) .  Let P be (xo, yo). 

Consider the line U=Uo on the uv plane. The image of this line 
under the transformation F is a curve in ga. By arguments similar 
to those used in the proofs of Theorems 3 and 4 of [1], one easily 

~x ~x ~y ~y ~z Oz 
shows tha t  ~u ' Ov ' ~u ' ~v ' ~u ' ~v all exist at  P,  and with respect 

to the domains of these partial derivatives, are continuous at P. 

Theorem 3. 

Let S be such that, for all Q c S, D ( Q) ----O. Then for every sequence 
of polyhedra inscribed on S, such that the corresponding sequences of 
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decomposition norms and deviation norms both converge to zero, the 
limit of the sequence (A1,A2,...) of the polyhedral area8 is given by 

the Riemann double integral f V J12 @ J2 2 @ J3 2 d (u, v) where 
E 

~(y,z) ~(z,x) ~(x,y) 
J1--  ~(u,v) '  J~--  ~(u,v) ' J s - -  a(u,v) 

Proof: 
~x ~x ~y ~y ~z ~z 

At every point P e E ,  ~u ' ~v ' ~u ' ~v ' Ou ' and ~v exist and 

are continuous. Since E is bounded and closed, each of these 
partial derivatives is uniformly continuous on E. 

Let P: (Uo, Vo), Q = (f(uo, Vo), g (no, Vo), h (Uo, Vo)). Let S = F (E). The 
transformation F carries the lines u = uo and v = Vo to curves on S. 
Call these C~ and Cv, respectively. These curves have tangent lines 
at F(P) .  Call them Lu and Lv, respectively. At F(P) ,  L~ and Lv 
have direction numbers (f~ (no, Vo), gu (Uo, Vo), hu (Uo, Vo) ) and (fv (uo, vo), 
gv(uo, vo), hv(uo, vo)). The cosine of the angle between Lu and Lv 
is given by 

cos  0 ----- 
f~ f ,  + g~ g, + h~ hv 

We consider decompositions of E by right triangles with legs 
parallel to the uv coordinate axes and with arbitrarily small 
diameters. 

Let the vertices of a typical such right triangle be (u0, v0), 

(Uo, vo + A v), (uo + A u, Vo). Let 2' ((u0, v0)) = (Xo, yo, Zo); 

F (no, Vo + A v) = (Xo + A ~ x, yo + A ~ y, zo + A ~ z); 

F (uo + A u, Vo) = (Xo + Au x, yo + Au y, Zo + Au z). 

The area of the triangle determined by these three points on the 
surface is given by 

- - 2  - - 2  - - 2  Vz x A~y -l- A~z sinfl, 

where fl is the appropriate angle. 
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Now, let  e > 0 be given. There  exists 6 > 0 such t h a t  if  ]A u [ < 

and I A v ] < 8, t hen  

y fvz+g~+-hv  2 g f ~ + g . 2 +  hJ  ' IAul lAvl  sinOl < (e/B). 

Consider now a sequence of  decomposi t ions (D1,D2,-")  of  E 
wi th  corresponding sequence of  decomposi t ions norms converging 
to  zero and the  following corresponding sequences:  

D1, D2, , , 

N1,N2 , , ,  

2~, Z2,, , 

ZI', Z2',, ,  , where  the  X are the  areas of  t r iangles inscribed on S 
and the  S '  are sums of  the  t y p e  

V/  +g  +h 2sino 
Vfv 2 + gv 2 + hv 2 ~-fu 9" + gu 2 + hu 9' sin 0 m a y  be wr i t t en  in the  form 

V(fu 2 + gu ~ -~- hu 2) (fv 2 + gv 2 + hv 2) - -  (A  fv "+ gu gv + hu by) 2 = 

= V J12 + J2 2 -~- J3 2 . 

I t  follows t h a t  the  sequence ( Z I ' , X 2 ' , ' " )  converges to  

f f  WJ12+J2,+ dudv. Hen0o, the sequonce (Xl,X2,'"/ also 
E 

converges to  the  same double  integral.  
We  now consider the  case where there  exists P e E  such t h a t  

D(F(P))  > 0 .  

Theorem 4. 

Let G =  {all P e E  such that D(F(P))  >0}. I f  G is of Lebesgue 
measure zero, then there exists a sequence (Hl,II2," ") of polyhedra 
inscribed on S such that the corresponding sequence (A1,A2, ' " )  of 
the polyhedral area. converges to the Lebesgue area of S, whether this 
be finite or infinite. 

Proof :  
The  set G is closed and bounded  and hence compact .  F o r  eve ry  

e > 0 there  exists a closed set E ,  C E,  consisting of the  inter ior  
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and the boundary of a simple polygon, such that,  for all points 
P sEs, D (F (P) )----0 and area ore  - -  area of Ee< s. By Theorems 2 
and 3 there exists a sequence of polyhedra (HI,H2,'") inscribed 
on Ee such that  the corresponding sequence (A1,Az,..') of the 

polyhedral areas converges to the integral f V Jl~ -~ J2Z -4- js2 d (u, v). 
E~ 

This is precisely the Lebesgue area L8 of Ss ---= F (Es). 
Consider now a sequence (el, s%.'.) of positive numbers con- 

verging to zero. 
Let  (Hn, HI~, ' " )  be a sequence of polyhedra inscribed on 

Ssl = F(E,1). On E--Eel  there exists a finite triangulation A1 of 
area less than e2 which contains all the points P e E  for which 

D(F(P)) >0 .  Let  Ee~=Ee 1 w (E--Eel - -A1) .  There exists a se- 
quence (A2~, A22," ") of polyhedra inscribed on S~ ---- F (E~2) such tha~ 
the corresponding sequence (A21,A22,'") of the polyhedral areas 

converges to the integral j VJ~2+ J~ + J~ d(~,v) 
Ee2 

Continuing this process indefinitely gives us a sequence of 
sequences 

~1://11, ~12,.. .  

A l l ,  A12, �9 �9 �9 c o n v e r g e s  t o  fvJ12-4-J2~d-Ja"d(u,v); 

ee://21,He2," �9 �9 converges to f V J12 -4- J22 -4- Js 2 d (u, v); . . .  
Ee2 

~ons~dor oo. <ho ~on~onoo (S, S , " ) .  "~176 S-~ S'". ~' 
Eel Ee2 Eel Ee2 

this sequence is unbounded, then, by  the additivity of Lebesgue 
area, the Lebesgue area of S is infinite. 

~o~ ~.~o~e <~< <ho ~onoe~oo (S, Z,...) ~ Uo~odod. ~ o  
Eel E~ 

this sequence converges to a real number. Since the Lebesgue 

integrMfyJ12-FJ22-FJ32d(u,v) exists, thesequence(f,f,... ) 
E E~i E82 

oon~or~o~ ~o f V~.+~§ 
E 
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We now wish to set up a sequence of polyhedr~ (II1",II2",...) 
inscribed on S such that  the corresponding sequence (AI*,A~*," ") 
converges to the Lebesgue area of S. 

//1" is built from //11 by  merely adjoining a polyhedron on 

E--E~ 1 �9 II~* is built from H22" by  merely adjoining a polyhedron 

on E- -E~ ,  e~c. Since the sequence I . f ,  .]',... I converges to 

f ]/j12 _4_ jse + jss  d (u, v), the sequence (AI*,A2*,-..) also converges 
B 

to f V J12 + J2 ~ + J3 ~ d (u, v). I t  follows (from e of [2]) that  this limit 
E 

is the Lebesgue area of S. 

The identical procedure followed in the case where the sequence 

( f , f , . . . ) i sunboundedyie lds t~he l imi t~which is theLebesgue  
Eel Ee2 

area of S. 

We now consider the case where the set G is of positive outer 
Lebesgue measure. For this we have the following theorem. 

Theorem 5. 

I f  the set G of points P of E for which D (F (P)) > 0 is of positive 
outer Lebesgue measure, then the Lebesgue area of S is infinite. 

Proof:  

Consider the projection P~y (S), P~z (S), and Pyz(S) of S on the 
xg, xz, yz coordinate planes, respectively. Since the set H of 
points Q of S for which D(Q) ~0  is of positive outer Lebesgue 
measure, it follows that  on one of the three projection sets Pxy (S), 
Pxg (S) and Pyz (S) there is a set of points R of positive outer Lebes- 
gue measure which are the projection of points Q of S for which 
D(Q) ~ 0 .  I t  now follows from Theorem 9 of [1] tha t  this portion 
of S is of infinite Lebesgue area. I t  follows that  the Lebesgue area 
of S is infinite. 

In  this paper we have confined ourselves to triangulable para- 
metric surfaces. Some surfaces ~re not triangulable, e. g., degenerate 
surfaces such as the loci in d ~3 of functions x=f(n,v),  y : f (u , v ) ,  
s----f(u,v). We shall give a t reatment  of these surfaces in a succeed- 
ing article. 
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