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ARZELA'S DOMINATED CONVERGENCE THEOREM 
FOR THE RIEMANN INTEGRAL 

W. A. J. LUXEM BURG, California Institute of Technology 

1. Introduction. Riemann's definition ([14], p. 239) of a definite integral 
gave rise to a number of important developments in analysis. In the course of 
these developments a remarkable result due to C. Arzela ([11, 1885) marked the 
beginning of a deeper understanding of the continuity properties of the Riemann 
integral as a function of its integrand. The result of Arzela we have in mind is the 
so-called ARZELA DOMINATED CONVERGENCE THEOREM for the Riemann integral 
concerning the passage of the limit under the integral sign. It reads as follows. 

THEOREM A (C. Arzela, 1885). Let {f, } be a sequence of Riemann-integrable 
functions defined on a bounded and closed interval [a, b], which converges on [a, b] 
to a Riemann-integrable function f. If there exists a constant M> 0 satisfying 

Ifn(x) I < M for all xE [a, b] and for all n, then lim7, fJ If (x)-f(x) I dx=0. In 

particular, 
rb rb rb 

lim I f.(x)dx = f limf.(x)dx f(x)dx. 

Usually, Arzela's theorem is formulated as a result about term-by-term 
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integration for infinite series of integrable functions. In that case, the sequence 
of the partial sums of the infinite series plays the role of the sequence {f; } in 
Theorem A. 

Due to the development of the theory of Lebesgue integration we recognize 
nowadays that Arzel'a's theorem rests on the countable additivity property of 
the Lebesgue measure. As a matter of fact, Arzel'a based the proof of his theorem 
on the following result about systems of intervals. 

THEOREM B (C. Arzela, 1885). Assume for each n that D. denotes a subset of 
[a, b| that is the union of afinite (or countably infinite) number of mutually disjoint 
intervals. If for each n, the sum t(D.) of the lengths of the intervals in each D. 
satisfies t(D.) >5, where 5>0, then there exists at least one point c G [a, b] which 
satisfies cEDE for infinitely many n. 

If one knows that the interval function measuring the length of an interval is 
countably additive, then Arzela's Theorem B follows immediately by observing 
that 

t(lim sup D.) ? lim sup t(Dn) 2 5 > 0. 
n-4 0o Q 

In the axiomatic approach to the theory of integration, Arzela's theorem in 
one form or another is taken as one of the basic axioms. For instance, in abstract 
measure theory (see [18], Chap. 2) it appears in the form of the axiom that mea- 
sures are countably additive. One of the basic axioms introduced by Daniell 
(see [7], [3] and [18], Chap. 3), in his functional approach to the theory of 
integration, is Arzela's theorem for decreasing sequences of functions that de- 
crease everywhere to zero. The extension procedures of the theory of integration 
for abstract measures as well as for abstract integrals are such that all the 
axioms are preserved unter the extension. Consequently, the general dominated 
convergence theorem for the extended integral in the abstract theory of integra- 
tion is relatively easy to prove. The situation, however, is quite different in the 
more elementary theories of integration. For instance, in the theory of the 
Riemann integral the concept of a Riemann-integrable function and the value of 
its integral is usually defined at the outset before the basic properties of the 
interval function, which measures the length of an interval, such as countable 
additivity or even additivity have been established. This is the main reason why 
Arzela's theorem for the Riemann integral has the reputation of being difficult to 
prove without using results from the theory of Lebesgue measure. On the other 
hand, in the theory of Lebesgue integration the countable additivity property of 
the Lebesgue measure is one of the first basic results which are established. The 
Arzela-Lebesgue dominated convergence theorem follows then rather easily. 
This state of affairs may account for the fact that the search for an "elementary 
proof", roughly meaning, independent of the theory of Lebesgue measure, for 
Arzel'a's theorem is still on. A number of elementary proofs were published by 
F. Riesz [15] in 1917, by L. Bieberbach [4] and E. Landau [10] in 1918, by F. 
Hausdorff [9] and H. S. Carslaw [6] in 1927, by H. A. Lauwerier [11] in 1949, 
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972 W. A. J. LUXEMBURG [November 

by J. D. Weston [16] in 1951, by W. F. Eberlein [8] in 1957, and by the present 
author [12] in 1961, respectively. Incidentally, in 1897, independently of C. 
Arzela, W. F. Osgood [13] rediscovered Arzela's theorem for continuous func- 
tions. 

A few words concerning the known elementary proofs seem to be in order. 
L. Bieberbach gave a new and more elementary proof of Theorem B, and showed 
once more how to derive Arzela's theorem from Theorem B. It seems that 
Arzela's original proof of Theorem B (see [1], pp. 532-537) contained a gap 
which he filled later (see [1], pp. 596-599). A more detailed account of Arzela's 
investigations can be found in [2]. E. Landau [10] gave an elementary and 
short proof that Theorem B implies Theorem A, thereby improving in part, 
Bieberbach's proof for Arzela's theorem. F. Riesz [15] was the first to give a real 
elementary proof of Arzela's theorem for continuous functions. He based his 
proof on Dini's uniform convergence theorem for monotone sequences of con- 
tinuous functions rather than on Theorem B. F. Hausdorff [9] showed that 
Dini's theorem could also be used to obtain Arzela's theorem for Riemann- 
integrable functions. But Hausdorff's proof seems to contain an error, which we 
shall discuss in more detail below. In [6], H. S. Carslaw presents his own version 
of the Bieberbach-Landau proof, which he remarks had gone unnoticed until 
that time in the English speaking world. In a footnote in the same article ([6], 
p. 438) Carslaw asks whether there exists also an elementary proof of a general- 
ization of Arzela's theorem due to W. H. Young [17]. An affirmative answer to 
this question is presented in the final section of the present article. H. A. 
Lauwerier [II] uses a form of Egoroff's theorem, but where he refers to Jordan 
content he really means Lebesgue measure. From a pair of inequalities for upper 
and lower integrals combined with an argument which could be used to prove 
Theorem B, J. D. Weston [16] obtains still another proof of Arzela's theorem. 
W. F. Eberlein [8] proves Arzela's theorem for Radon measures, defined on the 
space of real continuous functions on a compact Hausdorff space. Eberlein's 
proof is completely different from the proofs we have discussed so far. It is 
geometric in nature in that it is based on the parallelogram law and the minimal 
distance property for convex sets in inner product spaces. It is strongly recom- 
mended for study to the interested reader. In [12], the present author proves 
Arzela's theorem for the abstract Riemann integral. It rests on a simplified 
version of a modification, due to I. Amemiya, of a technique used by F. Riesz in 
[15]. 

Despite the availability of this variety of elementary proofs for Arzela's 
theorem, the present author finds that in most textbooks on analysis, whose 
authors have chosen to treat the Riemann integral rather than the Lebesgue 
integral, Arzela's theorem is not mentioned, or, if it is mentioned, it is rarely 
accompanied by a correct proof or by any proof at all. In view of this, we should 
like to make one more attempt to show that Arzela's theorem for the Riemann 
integral can be proved in an elementary fashion. By searching through the 
literature the author discovered that his new proof is essentially the same as 
Hausdorff's proof published in 1927. But with the important exception that at 
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one point, where Hausdorff gives an incorrect inductive argument, the present 
author gives a simple direct argument which constitutes the main part of the 
proof of Lemma 2.2 below. 

2. An elementary proof of Arzela's theorem. Any proof of Arzela's theorem 
depends in no small measure on how the Riemann integral is introduced. We 
shall assume in the rest of the paper, that a bounded real function on a bounded 
and closed interval is Riemnann integrable if its lower Darboux integral is equal 
to its upper Darboux integral, and that the value of its integral is equal to the 
common value of its lower and upper integrals. Furthermore, we assume that 
the reader is familiar with the DINI UNIFORM CONVERGENCE THEOREM: Each 
monotone sequence of continuous functions that converges pointwise to a continuous 
function on a bounded auzd closed interval is uniformly convergent. We shall also use 
the following notation: [a, b ] denotes the bounded and closed interval 
x: a < x< b }; B [a, b] denotes the family of all bounded functions on [a, b]; 

C [a, b ] denotes the family of all continuous functions on [a, b ]; R [a, b ] denotes 
the family of all Riemann-integrable furnctions on [a, b]; 

b b 

f(x) dx and f(x)dx 
a a 

denote the lower and upper Darboux integrals of a function fEB [a, b] respec- 
tively. By a step function we mean a finite linear combination of characteristic 
functions of intervals of finite length. 

The proof of Arzela's theorem will be based on the following two lemmas: 

(2.1) LEMMA. For each 0 <fECB [a, b] and for each E> 0, there exists a con- 
tinuousfunction g EC [a, b] satisfying 0 ! g <f and 

rb bs 
f(x)dx _f bg(x)dx + e. 

_a a 

Proof. From the definition of the lower integral it follows that for each e> O 
there exists a step function s on [a, b ] satisfying O?<s ?f and 

fb fb 
f(x) dx < s(x)dx +e/2. 

_a a 

It is easy to see that s can be transformed into a trapezoidal function g, such that 
0 <g s and fb s(x)dx fab g(x)dx+e/2. Hence, there exists a continuous function 
gEC[a, bI satisfyingO< g?f and 

f f(x)dx ? f g(x)dx + e; 

and the proof is finished. 

(2.2) LEMMA. Let {f. } be a decreasing sequence of bounded functions on 
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[a, b]. If liinOf (x)-Ofor allx E [a, b], then 
b 

lim f, f(x) dx -?- rn r- bco0 

Proof. It follows from (2.1) that for each E>0 and for each n, there exists a 
continuous function gn E C [a, b ] such that 0 ? gn <fn and 

*b b 
f bf(x)dx ? f gn(x)dx + E/2 

For each n, we set hn-min(g1, g2, , g.). Then 0<h vgn!fn, hn.C[a, b], 
and the sequence { h,n } decreases to zero everywhere on [a, b]. Hence, by Dini's 
uniform convergence theorem, the sequence { h. } converges uniformly to zero 
on [a, b], and consequently lim f' h,,(x)dx= 0. The proof of the lemma will be 
finished if the following inequalities are established. For each n, 

pb b 
(2.3) 0 J fn(x)dx S 3 hn(x)dx + E(1 - (1/2n)). 

__a a 

To this end, we shall first prove the following inequalities. For each n, 
n-1 

(2.4) 0 ? gn < hn,+ ((max(gi, g) - -gt). 
iGi 

The inequalities (2.4) follow easily by observing that for each 1 ;i i 

0 < gn - gi + (gn - gi) gi + (max(gi, . . . , gn) - gi) 
n-I 

gi + (max(gi, *g) - gi), 

so (2.4) follows. From max(gj, * * *, g,n) ?max(fi, * , fn) =fj it follows that 

rb b rb f fi(x)dx f b(max(gi, * * , gn) - gi)dx + f gi(x)dx, 
__a a a 

so rb b rb 
J (maX(gi, gn)- gi)dx ? J fi(x)dx - gi(x)dx ? E/2i 

a ao a 

for i 1, 2, * * , n. Hence, by (2.4), for each n, 
rb b nl * b 

(25) g(x)dx _ hk(x)dx + l/2i r h 
+(x)dx e(1 - (1/2n-1)). 

a a i=1 a 

Finally, fnf,(x) <Jb g,(x)dx+E/2n and (2.5) imply (2.3), and the proof is 
finished. - 

REMARK. The reader does well to observe that Lemma 2.2 for Riemann 
integrable functions is already Arzela's theorem for monotone sequences. 
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We shall now turn to the proof of Arzeli's theorem. 
To this end, it is no loss in generality to assume that 0 ?f.(x) ?; M for all n 

and for all xE [a, b] and thatf(x) =lim,,,,f.(x) =0 for all xE [a, b1. For each n, 
and for each xE [a, b]J, we set p (x) =sup*4o (fn+k(x)). Then O gfn,g pn and the 
sequence {Pn } decreases everywhere to zero on [a, bj. Indeed, 0=lim._.f,,f(x) 
=lim sup f (x) = limx -. p (x) for all xE [a, b]. Hence, by Lemma 2.2, 

rb 
lim J p,(x)dx = 0, 
na* 

i Ia _affnxd and so, 0 ? limn-X fSfn(X)dX ?limn-fgaPn(x)dx=O, that is, limnX ff(dx 
=0, and the proof is finished. 

One may perhaps feel that the above proof follows too closely the corre- 
sponding proof of the dominated convergence theorem for the Lebesgue integral 
and that an elementary proof of Arzela's theorem should deal with Riemann 
integrable functions only. We will show that this is possible. It is clear that 
Lemma 2.1 can be shown to hold for Riemann integrable functions in exactly the 
same way. With respect to Lemma 2.2 the situation is somewhat different. For 
Riemann integrable functions we can avoid the inequalities (2.4) and prove the 
inequalities (2.3) directly as follows: We shall use the same notation as in the 
proof of Lemma 2.2 with the extra hypothesis that the functionsfE are Riemann 
integrable. Since the sequence fn} is decreasing, we have for each n, f. 
=min (f1, * *fE),and so 

0 ?f,~ - It,, min(f1, . . . ,f,) - min(g, . . 
* gn 

) 5 E (fi-gg). 
i5=I 

Hence, for each n, 

rb rh V. b n 
o f f b(x)dx - h.(x)dx < f (fi(x) - gi(x))dx < E e/2i 

a a TA a i=4 

= E(1 - (1/2n)). 

Since the lower integral is not subadditive but superadditive, the above method 
cannot be used to prove Lemma 2.2. That is why we had to introduce the in- 
equalities (2.4) to obtain (2.3). It is also this point, where Hausdorff's proof is in 
error. 

Having established Lemma 2.2 for Riemann integrable functions, we have, 
in fact, proven Arzela's theorem for monotone sequences. The next question 
which we have to answer is whether we can deduce Arzela's theorem directly 
from its special case for monotone sequences. It is not without interest that this 
is indeed true. This fact is contained in the paper by F. Riesz [15] as well as in 
the paper by W. F. Eberlein [8]. For the sake of completeness we shall show 
how this can be done. In order to bring out more dramatically that Arzela's 
theorem is a logical consequence from the special case for monotone sequences, 
we shall adopt the followinlg abstract setting: 

Let X be a non-empty set, and let L be a linear space of real functions defined 
on X, satisfyingfEL implies j fj EL. The latter condition implies that for every 
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finite set of elements tfi , fn} of L, max(f1, * fj)EL and min 
(f) EL. A positive linear functional I on L is called an integral when- 

ever I has the following property: 
(2.6) If 0 <fmEL for each n, and the sequence {fn } decreases to zero everywhere 

on X, then limI_ 1(fm) = 0. 

It is obvious that (2.6) is Lemma 2.2 for I and L. We shall now show that 
(2.5) implies the following (abstract) Arzela-type theorem: 

(2.7) THEOREM. Let f CL be the limit of an everywhere on X convergent sequence 
{f } of elements of L. If there exists an element 0 ?gEL satisfying I f,(X) <g(x) 
for all x EX and for all n, then for every integral I on L we have limmo I(I f f ff) 
=0. In particular, lim I, 1(fm) = I(f). 

Proof. By considering the sequence { | fm(x) -f(x)| }, which satisfies I fn(x) 
-f(x) 1 < I f(x) I +g(x) for all xEX and for all n, where j f I +gEL, we may as- 
sume without loss of generality thatfm(x) 0 O for all xEX and for all n and that 
f(x) = 0 for all x EX. Following F. Riesz [15], we set gn,m = max(fn, fn?1, .* * * fm) 
for each pair of indices m>n. Then 0-g.,nCEL and 0-<gmn<g for all m>n. 
Furthermore, for each n, the sequence {gm,n ,}, alnd consequently, the sequence 
I I(g,m) } is increasing and bounded in m > n. Hence, for each E> O and for each 
n there exists an index mn > n such that mn < mn+ and 

(2.8) 0 ? I(gn,k) - I(gn,m ) < e/2nx 

for all k > mn. For the sake of simplicity we set Un = gn,m,,. Then 

0 ? lim sup Un(X) _liM SUP f( limfn(x) ---- = 0 
n-400 n -4c n l-* 

for all xEX implies that lim1n<,o Un(X) =0 for all xEX. If we apply the inequali- 
ties (2.4) to the sequence { Un }, we obtain for each n, 

n-1 

(2.9) 0 ?5 fm Un ?n min(ul, * , Un) 
+ , (max(Ui, . . , Un) - ut) 

i=l 

Since max(ui, * * * 
, Un)-uj=max(fi, * f.nj-uj=gj, -g .,m, and mm>mi 

for n>i, we conclude that I((max(ui, * * , Un) -u )) <e/2i for 1 <i<n, and so, 
by (2.9), for each n, 

(2.10) 0 - I(fm) < I(min(ui, * , un)) + E(1 - (1/2)n-1). 

From limn. Um(X) = 0 for all xEX, it follows that the sequence 
{ min(u1, * *, un) } decreases everywhere to zero on X. Hence, by hypothesis, 
limn+, I(min(ul, * , ua)) =0, and finally, using (2.10), we obtain that 
limnoo I(f) = 0, and the proof is finished. 

REMARK. It is not difficult to convince oneself that the above proofs can be so 
modified as to obtain Arzela's theorem for Riemann integrable functions of 
several variables. For the Riemann-Stieltjes integral, Arzel'a's theorem also 
holds provided it is introduced in such a way that (2.1) and (2.2) hold. For this 
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19711 ARZELA'S DOMINATED CONVERGENCE THEOREM 977 

purpose, it is necessary and sufficient that the Stieltjes measure for intervals is 
defined in such a way that it is a countably additive interval function. In that 
case, the proofs of (2.1) and (2.2) remain the same. Conversely, (2.2) implies the 
countable additivity property of the Stieltjes measure. 

3. Fatou's lemma for the Riemann integral. In the theory of Lebesgue 
integration, Fatou's lemma plays an important role. The analogous result for the 
Riemann integral will follow easily from the following lemma: 

(3. 1) LEMMA. Let 0 <f CR [a, b ] be the limit of an everywhere convergent 
sequence { f, } of non-negative Riemann integrable functions on [a, b]. Then 

rb 
lim f(f(x) -fn(x))+dx = 0, 
n -oo ao 

where (f(x) -fn(x))+ = max(f (x) -fn(x) , O) for all x C [a, b]. 

Proof. Since the functions fn, f are non-negative it follows that f(x) -ft,(x) 
<f(x) for all x [a, b]. Hence, (f(x) -f,1(x))+ <f(x); and the result follows from 
Arzela's theorem. 

(3.2) THEOREM. (Fatou's lemma for the Riemann integral). Under the same 
hypotheses of (3.1), we have 

o? f f(x)dx < lim inf f,,(x)dx. 
a ~~~~~~n -oo a0 

Proof. Observe that = (f-fn) +fn _ (f-f.)++f. for all n. Hence, by (3.1), 
rb rb fb \ b 
J f(x)(dx ? b J ff(x)dx = lim inf J f.(x)dx, 

a n~~~\s a / o 
and the proof is finished. 

From (3.1) we can also deduce the following result supplementing Fatou's 
lemma: 

(3.3) THEOREM. Under the same hypotheses of (3.1), and f f(x)dx = limn+ 
f'fn(x)dx, we have limn,m of f (x) -fn(x) dx = 0. 

Proof. From (3.1), the new hypothesis, and 

f(X) - fn(X) = (f(X) - fn(X))+ - (f(X) -fn(X)) 

for all n, it follows that limn+,wfa (f(x) -fn(x))- dx = 0, where (f(x) -fn(x))- 
=max(-(f(x) -fn(x)) , 0) yx [a, b]. Hence 

rb lim J f(x) -fn(x) j dx 
n- gooa 

= lim ( b(f(x) -fn(x))+dx + (f(x) -fn(x))-d) = 0, 

and the proof is finished. 
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4. W. H. Young's extension of Arzel&'s theorem. In [17], Test 6, p. 316, 
W. H. Young gave an extension of Arzel's theorem for the Lebesgue integral, 
which appears as a problem about term-by-term integration in [5], Example 
22, p. 144. In [6], Carslaw asks whether there exists a simple proof for Young's 
result. Since the result of Young is interesting in itself, we shall present it here 
supplied with an elementary proof. 

(4.1) THEOREM (W. H. Young). Assume fn, gn, and h.ER[a, b] for each n and 
that the sequences {fn }, { gn } and { hn } converge everywhere on [a, b ] to the Riemann 
integrable functionsf, g, and h, respectively. If hn ;fn; gnfor each n, and passage of 
the limit under the integral sign for the sequences { gn }, { hn } is possible, that is, 
limn ,0 fb gn(x)dx =fab limn-. gn(x)dx =fab g(x)dx and limn- fb hn(x)dx =fa limn,. 

hn(x)dx = fa h(x)dx, then the same holds for the sequence {f n}, that is, limn-,, 
fnf (x)dx =f- limn,.fn(x)dx =faf(x)dx. 

For the case that h. (x) =-M and gn(x) = M for all n and for all xC [a, b], 
where M is a positive constant, Young's theorem reduces to Arzelh's theorem. 

We shall now show that Young's theorem follows from Arzel&'s theorem, 
Theorem 3.3 and the following lemma: 

(4.2) LEMMA. If O< u, v, and wER[a, b ] satisfy O<uC v+w, then u can be 
written in the form u = U1+U2, where 0 <u1 <v, 0 <U2 _ w, and u1, U2 R [a, b]. 

Proof. Let ul=min(u, v) and let u2 = u-u. Then O < ul < v and O <u2 =u-ul 
=min(u, v+w) -min(u, v) <v+w-v = w. Since min (u, v)= u (U+v-I u-vI) it 
follows that uEER[a, b], and so also u2=u-ujER [a, b], finishing the proof. 

We shall now turn to the proof of Young's theorem. From hn<fn- gn it 
follows that 0 <fn-hn ;gn-hn=gn-hn,-(g-h) +(g-h). Observe that the 
sequence { gn - hn } satisfies the hypotheses of Theorem 3.3, and so, by setting 
un- gn -hn -g+hI for each n, we conclude that 

b 

(4.3) lim un(x)dx = 0. 
na 

Then O?fn -f-hhn +f < un + |g - h for all n. Hence, from (4. 1) it follows that 
Ofn-f-hn+f=vn+w. for all n, where 0?v,N, w.C-R[a, b], O5Vn<5n, and 
O <Wn j I g-hj for all n. Since limn-. u. (x) = 0 for all xE [a, b] it follows that 
limn,, Wn(X)=f(x)-h(x) for all x E[a, b]. Then O ?wn, | g-h| ER[a, b] for all 
n implies, by Arzelh's theorem, 

bs b bs 
(4.4) lim I bn(x wf)dx f(= f xb - h(x)dx. 

Hence, b 4.3 nd 4.4wehaa ae 

Hence, by (4.3) and (4.4) wve have 
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lim (fn (x) -f(x))dx - f 1s(x)dx + fbf(x)dx) 
a45 b b 

-X ff(x)dx - h(x)dx. 

From the hypothesis limn,, f hf(x)dx Jf h(x)dx and (4.5) it follows finally 
that lim,o fJ' (fn (x) -f (x))dx exists and is equal to zero, and the proof is finished. 

REMARK. The reader will have no difficulty in showing that if, in addition, 
the sequences { gn }, and { h. } satisfy limn>,, fa I hn(x) - h(x) j dx- 0 and 

limRO. Jf I g (x) -g(x) J dx = 0, 
then the sequence {fn } also has the property limn, fab Ifn (x) -f(x) I dx 0. 

Work on this paper was supported in part by NSF grant GP 23392. 
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