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This document will be evolving (like a blog) over time. It will include an introduction to Baire category
theory and applications. To be explicit I will assume we are working in R, but many of the statements and
proofs will be correct in a more general context. The concept of countability is crucial in the definitions.
I will start off with the definitions. Their meaning will be developed in the applications. There are many
good references. I will often take proofs from John Oxtoby’s book, Measure and Category, [1].

Definition 1. A set E is dense in an interval I if for every subinterval J C I , JNE # &. A set E is
nowhere dense if it is not dense in any interval.

Remark 1. If E is nowhere dense, then for every interval I there is some subinterval J of I such that
JNE = @. This is equivalent to the statement that the closure of E, E has no interior. E is nowhere
dense if and only if E is nowhere dense. If E is nowhere dense every open set must contain points in E°,
so the complement of the closure of a nowhere dense set is dense. If the complement of the closure of E is
dense then the E is nowhere dense.

Suppose Fj is nowhere dense. Then E; # R, so there is a point p ¢ E; and hence a nonempty compact
ball around p, Bj, that is disjoint from E;. We can suppose the radius of Bj is less than 1. Now take
a second nowhere dense set Ey. Then Bj is not contained in Eo so we can select a point in the interior
of By and a closed ball By of radius less than 1/2 inside B that is disjoint from Es. This ball will also
be disjoint from FEq. Let E; be a sequence of nowhere dense sets. We can construct a nested sequence of
balls Bj;1 C B;j which are disjoint from UE; and by the nested interval theorem they have a non-empty
intersection NB;. We have proved that UFE; # R. This is the Baire category theorem which we will now
state.

Definition 2. A set is of first category if it is a countable union of nowhere dense sets. For example
Q is a set of first category. A set is of second category if it is not a set of first category. A generic set
1s the complement of a set of first category.

Theorem 1 (Baire Category Theorem). R is not of first category. If C is a set of first category then
there are points not in C. A set of first category can not be all of R. A generic set in R is dense.

Proof. The only thing left to prove is the density statement. An examination of the proof shows that any
open set contains a point not in £ and hence a nonempty open set disjoint from E;. Continuing the proof
we conclude that any open set contains a point of (UE;)¢. In other words any neighborhood of any point
contains a point of (UE;)¢. This implies that (UE;)¢ is dense. This also proves that (UE};) is dense.

O

Corollary 1. The intersection of a dense sequence of open sets is dense.

Proof. Let G be open and G; = R. Let F; = R — G;. Then Fj is nowhere dense. It follows that
N;G; = (U;F};)¢ is a generic set and hence dense. O



Remark 2. The same proof shows that any interval (open, closed, or neither) is not a set of first category
and it also proves that R™ is not of first category.

We will use this result to prove some striking theorems. We also will use the following definitions.

Definition 3. A subset E of R" is a G5 if E = N;2,Gy, where each G, is and open set. Notice the
intersection is countable. A set B is an Fy it is a countable union B = UF,, where each F, is closed.

Proposition 1. Closed and open sets are both Gs’s and Fy’s.

Proof. 1t is clear that an open set is a G5. Every open set is a countable union of closed balls with rational
centers and rational radii. Since the complement of an F, is a Gs the result for closed sets follows. 0

Proposition 2. The set Q of rational numbers is an F, but not a Gs.

Proof. If Q were a G, then the complement of QQ is the countable union of closed sets Q¢ = UGY,. Since
Q¢ has no interior, (G¢)° = @, where E° denotes the interior of a set. But we have written R = QU (UGS)
as a countable union of nowhere dense sets and this contradicts the Baire category theorem. O

Let f be a function defined on R™. We define the oscillation of f on a set W by ow (f) = supy (f) —
infy (f), where supy,(f), infy (f) are the sup and inf of f on W. Let B,(z) = {y : ||y — z|| < 1/n and

define of(x) = %11)% 0B, (z)([f)-

Proposition 3. f is continuous at a if and only if of(a) = 0.

Proof. This is true by the ¢ — § definition of continuity. O
Proposition 4. For every number r, {x|os(x) < r} is an open set (and {x|of(x) > r} is closed).

Proof. 1f oy(x) < r then for some n, og, (,)(f) < r and then for all y € B, (), of(y) <. O

Theorem 2. Let D(f) be the set of discontinuity points of f. Then D(f) = {x| Uy {of(x) > 1/k} and
hence D(f) is an F,.

Theorem 3. Let F = U2 F,, be an F;, where each F,, tis closed. Then there is a function f with
D(f) = F.

Proof. (Taken from [1]. ) We will assume F' # R™. Let A,, be the set of rational points in F;? (might be

empty) and let
Jn = XF\A, = XF, — XA, Then

0ifz ¢ Fp.

It is important that F,, be closed for this to be correct. This implies D(f,) = F,,. Now let a,, = 1/n! and
f=>7 anfn. We claim that a,, > > m>n @m- This is an easy thing to check. By the Weierstrass M-test,
the series converges uniformly. Since each f,, is continuous on R — F', f is continuous on R — F. Now we
estimate the oscillation of f at each point of F'. On F}

lifzeF,
o, (z) =

0< Zamfm(a:) < Zam < ai.
2 2

In each neighborhood of a point x of F} the maximum of f is at least a; and the minimum is less than or
equal to Y 5 am. So of(x) > a1 — Y, w9 am > 0. If z € OF; then fi(z) =1 and the maximum of f is at
least a;. Again, the minimum is no more than >°5° a,,, so oy(x) > 0. A similar argument works at each
point of F;, — F;,_1 to prove that of(x) > 0,2 € F, thus D(f) = F. O



Now let’s see what we can say about limits of continuous functions.

Theorem 4. Suppose f, is continuous on I for each n and suppose li_)m fu(x) = f(x),x € I, where I is
n o

an interval. Then D(f) is a set of first category.

Proof. Let ¢ > 0. First, we prove that E. = {z : o¢(x) > c} is nowhere dense. If we know this, then
D(f) = Ug{z|oj(x) > 1/k} is of first category.

We will show that any compact subinterval in I has a subinterval that is not a subset of E.. Choose d
with 3d < ¢, let K be a compact subinterval of I, and let

Fo = Ngasniz € K | fr(z) — fi(z)] < d}.

F, is the intersection of closed sets and hence closed. Convergence on I and the Cauchy criterion implies
that U, F,, = K. By the Baire category theorem, not every F,, can be nowhere dense. Then for some n
there is a compact interval J such that J C F,,. Now fix [ = n and let k£ — oo to get |f(x) — fn(z)| < d
for all z € J. Since f, is continuous there is a § > 0 so that |f,(z) — fu(y)| < d for |z — y| < ¢ (uniform
continuity of f, on J). Then |f(z) — f(y)| < 3d when |z —y| < . Soif v € J, oy(x) < 3d and hence
J ¢ {x:op(x) > c}. O

Corollary 2. The set of discontiuities of a derivative is a set of first category. The set of points of
continuity of a derivative is a generic set and hence dense. There are “lots” of points of continuity of a
derivative.

Proof. If f has a derivative, f is continuous. Then

fe) =t LU

n—00 1/n ’

so f’ is a limit of a sequence of continuous functions. We have to be more careful on an interval since if f is
defined on an interval I, f(z+1/n) might not be defined on that interval. If f has a derivative on a closed
interval, we can extend f linearly beyond the endpoints to a function that is differentiable everywhere. If
I is not closed, we can restrict f to a sequence of closed sub intervals that exhaust I and conclude that
the set D(f’) is a countable union of sets of first category and hence is of first category. O
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