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This document will be evolving (like a blog) over time. It will include an introduction to Baire category
theory and applications. To be explicit I will assume we are working in R, but many of the statements and
proofs will be correct in a more general context. The concept of countability is crucial in the definitions.
I will start off with the definitions. Their meaning will be developed in the applications. There are many
good references. I will often take proofs from John Oxtoby’s book, Measure and Category, [1].

Definition 1. A set E is dense in an interval I if for every subinterval J ⊂ I , J ∩ E 6= ∅. A set E is
nowhere dense if it is not dense in any interval.

Remark 1. If E is nowhere dense, then for every interval I there is some subinterval J of I such that
J ∩ E = ∅. This is equivalent to the statement that the closure of E, E has no interior. E is nowhere
dense if and only if E is nowhere dense. If E is nowhere dense every open set must contain points in E

c
,

so the complement of the closure of a nowhere dense set is dense. If the complement of the closure of E is
dense then the E is nowhere dense.

Suppose E1 is nowhere dense. Then E1 6= R, so there is a point p /∈ E1 and hence a nonempty compact
ball around p, B1, that is disjoint from E1. We can suppose the radius of B1 is less than 1. Now take
a second nowhere dense set E2. Then B1 is not contained in E2 so we can select a point in the interior
of B1 and a closed ball B2 of radius less than 1/2 inside B1 that is disjoint from E2. This ball will also
be disjoint from E1. Let Ej be a sequence of nowhere dense sets. We can construct a nested sequence of
balls Bj+1 ⊂ Bj which are disjoint from ∪Ej and by the nested interval theorem they have a non-empty
intersection ∩Bj . We have proved that ∪Ej 6= R. This is the Baire category theorem which we will now
state.

Definition 2. A set is of first category if it is a countable union of nowhere dense sets. For example
Q is a set of first category. A set is of second category if it is not a set of first category. A generic set
is the complement of a set of first category.

Theorem 1 (Baire Category Theorem). R is not of first category. If C is a set of first category then
there are points not in C. A set of first category can not be all of R. A generic set in R is dense.

Proof. The only thing left to prove is the density statement. An examination of the proof shows that any
open set contains a point not in E1 and hence a nonempty open set disjoint from E1. Continuing the proof
we conclude that any open set contains a point of (∪Ej)c. In other words any neighborhood of any point
contains a point of (∪Ej)c. This implies that (∪Ej)c is dense. This also proves that (∪Ej)c is dense.

Corollary 1. The intersection of a dense sequence of open sets is dense.

Proof. Let Gj be open and Gj = R. Let Fj = R − Gj . Then Fj is nowhere dense. It follows that
∩jGj = (∪jFj)c is a generic set and hence dense.
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Remark 2. The same proof shows that any interval (open, closed, or neither) is not a set of first category
and it also proves that Rn is not of first category.

We will use this result to prove some striking theorems. We also will use the following definitions.

Definition 3. A subset E of Rn is a Gδ if E = ∩∞n=1Gn where each Gn is and open set. Notice the
intersection is countable. A set B is an Fσ it is a countable union B = ∪Fn where each Fn is closed.

Proposition 1. Closed and open sets are both Gδ’s and Fσ’s.

Proof. It is clear that an open set is a Gδ. Every open set is a countable union of closed balls with rational
centers and rational radii. Since the complement of an Fσ is a Gδ the result for closed sets follows.

Proposition 2. The set Q of rational numbers is an Fσ but not a Gδ.

Proof. If Q were a Gδ, then the complement of Q is the countable union of closed sets Qc = ∪Gcn. Since
Qc has no interior, (Gcn)o = ∅, where Eo denotes the interior of a set. But we have written R = Q∪ (∪Gcn)
as a countable union of nowhere dense sets and this contradicts the Baire category theorem.

Let f be a function defined on Rn. We define the oscillation of f on a set W by oW (f) = supW (f) −
infW (f), where supW (f), infW (f) are the sup and inf of f on W . Let Bn(x) = {y : ‖y − x‖ < 1/n and
define of (x) = lim

n→0
oBn(x)(f).

Proposition 3. f is continuous at a if and only if of (a) = 0.

Proof. This is true by the ε− δ definition of continuity.

Proposition 4. For every number r, {x|of (x) < r} is an open set (and {x|of (x) ≥ r} is closed).

Proof. If of (x) < r then for some n, oBn(x)(f) < r and then for all y ∈ Bn(x), of (y) < r.

Theorem 2. Let D(f) be the set of discontinuity points of f . Then D(f) = {x| ∪k {of (x) ≥ 1/k} and
hence D(f) is an Fσ.

Theorem 3. Let F = ∪∞n=1Fn be an Fσ, where each Fn is closed. Then there is a function f with
D(f) = F .

Proof. (Taken from [1]. ) We will assume F 6= Rn. Let An be the set of rational points in F on (might be
empty) and let
fn = χFn\An

= χFn − χAn . Then

ofn(x) =

{
1 if x ∈ Fn
0 if x /∈ Fn.

It is important that Fn be closed for this to be correct. This implies D(fn) = Fn. Now let an = 1/n! and
f =

∑∞
1 anfn. We claim that an >

∑
m>n am. This is an easy thing to check. By the Weierstrass M -test,

the series converges uniformly. Since each fn is continuous on R− F , f is continuous on R− F . Now we
estimate the oscillation of f at each point of F . On F1

0 ≤
∞∑
2

amfm(x) ≤
∞∑
2

am < a1.

In each neighborhood of a point x of F o1 the maximum of f is at least a1 and the minimum is less than or
equal to

∑∞
2 am. So of (x) ≥ a1 −

∑
m≥2 am > 0. If x ∈ ∂F1 then f1(x) = 1 and the maximum of f is at

least a1. Again, the minimum is no more than
∑∞

2 am, so of (x) > 0. A similar argument works at each
point of Fn − Fn−1 to prove that of (x) > 0, x ∈ F , thus D(f) = F .
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Now let’s see what we can say about limits of continuous functions.

Theorem 4. Suppose fn is continuous on I for each n and suppose lim
n→∞

fn(x) = f(x), x ∈ I, where I is

an interval. Then D(f) is a set of first category.

Proof. Let c > 0. First, we prove that Ec = {x : of (x) ≥ c} is nowhere dense. If we know this, then
D(f) = ∪k{x|oj(x) ≥ 1/k} is of first category.

We will show that any compact subinterval in I has a subinterval that is not a subset of Ec. Choose d
with 3d < c, let K be a compact subinterval of I, and let

Fn = ∩k,l≥n{x ∈ K : |fk(x)− fl(x)| ≤ d}.

Fn is the intersection of closed sets and hence closed. Convergence on I and the Cauchy criterion implies
that ∪nFn = K. By the Baire category theorem, not every Fn can be nowhere dense. Then for some n
there is a compact interval J such that J ⊂ Fn. Now fix l = n and let k → ∞ to get |f(x) − fn(x)| ≤ d
for all x ∈ J . Since fn is continuous there is a δ > 0 so that |fn(x) − fn(y)| < d for |x − y| < δ (uniform
continuity of fn on J). Then |f(x) − f(y)| < 3d when |x − y| < δ. So if x ∈ J , of (x) < 3d and hence
J 6⊂ {x : of (x) ≥ c}.

Corollary 2. The set of discontiuities of a derivative is a set of first category. The set of points of
continuity of a derivative is a generic set and hence dense. There are “lots” of points of continuity of a
derivative.

Proof. If f has a derivative, f is continuous. Then

f ′(x) = lim
n→∞

f(x+ 1/n)

1/n
,

so f ′ is a limit of a sequence of continuous functions. We have to be more careful on an interval since if f is
defined on an interval I, f(x+ 1/n) might not be defined on that interval. If f has a derivative on a closed
interval, we can extend f linearly beyond the endpoints to a function that is differentiable everywhere. If
I is not closed, we can restrict f to a sequence of closed sub intervals that exhaust I and conclude that
the set D(f ′) is a countable union of sets of first category and hence is of first category.
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