Computing the Laplace Transform

We will give a technique for computing Laplace transforms once we know other Laplace transforms.
This material is taken from [1]

Theorem 1. [1] Suppose ¢ is piecewise continuous on [0,00) and to make it simple, assume |p(t)| <
M, |p(t)| < M on [0,00). Then it is true that f(s) = [;° e *'p(t)dt converges absolutely and uniformly for

R > s> 59> 0. Suppose also that fl M exists. Then for s >0
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Proof. The integral f(s) = fooo e Stg(t)dt converges absolutely and uniformly so we can integrate from
x = 89 to x = R and change the order of integration.
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An easy estimate proves that foo ¢Sf) —Rtdt — 0 as R — oco. Notice we have proved that fsoo f(x)dx
converges. O

Corollary 1.
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Proof. 1t is easy to compute
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by noticing that sint = I'm(e). Then apply the theorem. O
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