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This note will derive the following result. There is a more general result which I will post later.

Theorem 1. Let f(x1, . . . , xn) be a differentiable function. Let S = {xn+1 = f(x1, . . . , xn)} ⊂ Rn+1.
Then the n-dimensional area of S is

A(S) =
∫

(1 + |∇f |2)1/2. (1)

This theorem will rely on the following formula.

Theorem 2. Let Π be the m-dimensional parallelotope in Rn with coterminous edges given by the vectors
v1, . . . , vm. Then the m-dimensional area of Π is

A(Π) = (det(C))1/2, (2)

where C is the m×m matrix with entries vi · vj.

Proof. (of Theorem 2) Notice that we can write C in the following form.

C = V T V, V = [v1, · · · , vm] (3)

where V is the n×m matrix matrix whose columns are the column vectors v1, . . . , vm.. If Π is rectangular
(the vi are orthogonal), the matrix C is diagonal and the diagonal entries are |vi|2; so the result is true in
this case. C is symmetric and it is easy to see it is positive semi-definite, since

∑
vi · vjxixj =

∣∣∣∣∣(
m∑
1

xivi)

∣∣∣∣∣
2

.

Hence det C ≥ 0. (If the vectors are linearly dependent (Π is degenerate), then
m∑
1

xivi = 0 for some

choice of the xi and det C = 0.) So assume the vi are linearly independent. Let’s modify v1 by subtracting
multiples of v2, . . . , vm to make it orthogonal to each of v2, . . . , vm This requires solving the equations

m∑
2

ajvj · vk = v1 · vk, k = 2, . . . ,m.

Since v2, . . . , vm are linearly independent, this system has a unique solution. If we let v1 = v1 −
m∑
2

ajvj

and keep the rest of the columns the same, we get a new parallelotope with the same area. The new matrix
C is related to the original matrix C by the formula

C = AT CA, (4)
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where A is the matrix that differs from the identity matrix by having the last n − 1 entries in the first
column replaced by −a2,−a3, . . . ,−an. The determinant of A is 1, so det(C) = det(C). Eventually this
process produces a rectangular parallelotope Π with the same area as Π and thus

A(Π) = A(Π) = (det(C))1/2 = (det(C))1/2 (5)

Theorem 1 is a consequence of the following lemma. To simplify notation we use vertical bars to denote
determinant, |A| = det(A).

Lemma 1. In the statement of the lemma, d denotes the determinant.

1 + a2
1 + a2

2 + · · ·+ a2
n =

∣∣∣∣∣∣∣∣∣
1 + a2
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...
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. . .

...
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n

∣∣∣∣∣∣∣∣∣ = d (6)

Proof. The proof is by induction on n.
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∣∣∣∣∣∣∣∣∣
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Now by subtracting appropriate multiples of the first row from the other rows in the second determinant
we get ∣∣∣∣∣∣∣∣∣

a1 a2 a3 . . . an
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...
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Hence d = (1 + a2
2 + . . . a2

n) + a2
1.

Proof. (of Theorem 1). According to the definition of area, the area of the surface is

A(S) =
∫

A(Π)dx1dx2 . . . dxn (9)

Where Π is the parallelotope spanned by the column vectors
[1, 0, 0, . . . , fx1 ]T , [0, 1, 0, . . . , fx2 ]T , . . . , [0, 0, . . . , 1, fxn ]T . Theorem 2 and Lemma 1 tell how to compute
A(Π) and the result is A(Π) = (1 + f2

x1
+ f2

x2
+ . . . f2

xn
)1/2 = (1 + |∇f |2)1/2.


