Math 335 Sample Problems

One notebook sized page of notes (one side)will be allowed on the test. You may work together on the sample problems - I encourage you to do that. The test will cover sections 4.5, 4.7, 5.6, 5.7, 5.8, 8.1, 8.2, 8.3. The midterm is on Monday, March 4.

1. Let C be the curve of intersection of $y+z=0$ and $x^{2}+y^{2}=a^{2}$ oriented in the counterclockwise direction when viewed from a point high on the z-axis. Use Stokes' theorem to compute the value of $\int_{C}(x z+1) d x+(y z+2 x) d y$.
2. (a) Prove that $\int_{C} \frac{-y d x+x d y}{x^{2}+y^{2}}$ is not independent of path on $\mathbf{R}^{2}-\mathbf{0}$.
(b) Prove that $\int_{C} \frac{x d x+y d y}{x^{2}+y^{2}}$ is independent of path on $\mathbf{R}^{2}-\mathbf{0}$. Find a function $f(x, y)$ on $\mathbf{R}^{2}-\mathbf{0}$ so that $\nabla f=\left(\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right)$.
3. Folland §7.5, \#9.
4. Folland, §7.5, \#13.
5. Folland, §7.5, \#14.
6. Prove that

$$
\int_{0}^{1}\left(1-t^{4}\right)^{-1 / 2} d t=\frac{\Gamma\left(\frac{5}{4}\right) \sqrt{\pi}}{\Gamma\left(\frac{3}{4}\right)} .
$$

7. Let f be a 2π-periodic function and let a be a fixed real number and let a new function g be defined by $g(x)=f(x-a)$. What is the relation between the Fourier coefficients $\widehat{f}(n)$ and $\widehat{g}(n)$?
8. Find the Fourier series of

$$
\frac{1-r^{2}}{1-2 r \cos x+r^{2}}
$$

where $0 \leq r<1$. (You don't need to integrate.)
9. Let f be a 2π-periodic, piecewise smooth function. Let $\widehat{f}(n)$ be the complex Fourier coefficients of f. Show that there is a constant M (which will depend on f) such that $|\widehat{f}(n)|<M /|n|$ for all $n \neq 0$. Do not assume f is continuous.
10. Suppose f_{k} is a sequence of Riemann integrable functions on $[0,2 \pi]$ such that $\lim _{k \rightarrow \infty} \int_{0}^{2 \pi}\left|f_{k}-f\right|=0$. Prove that the Fourier coefficients satisfy $\lim _{k \rightarrow \infty} \widehat{f}_{k}(n)=\widehat{f}(n)$ for each n.
11. Suppose f and g are 2π-periodic and Riemann integrable on compact subsets of \mathbf{R}. Suppose also that $f(x)=g(x)$ in a neighborhood of a point x_{0}. Suppose that the Fourier series for one of the functions converges at x_{0}. Prove that the other series converges and

$$
\sum_{-\infty}^{\infty} \widehat{f}(n) e^{i n x_{0}}=\sum_{-\infty}^{\infty} \widehat{g}(n) e^{i n x_{0}}
$$

12. There may be homework problems or example problems from the text on the midterm.
