Math 335 Sample Problems

One notebook sized page of notes (*one side*)will be allowed on the test. You may work together on the sample problems – I encourage you to do that. The test will cover sections 4.5, 4.7, 5.6, 5.7, 5.8, 8.1, 8.2, 8.3. The midterm is on Monday, March 4.

- 1. Let C be the curve of intersection of y + z = 0 and $x^2 + y^2 = a^2$ oriented in the counterclockwise direction when viewed from a point high on the z-axis. Use Stokes' theorem to compute the value of $\int_C (xz+1)dx + (yz+2x)dy$.
- 2. (a) Prove that ∫_C (-ydx + xdy/x² + y²) is not independent of path on R² 0.
 (b) Prove that ∫_C (xdx + ydy/x² + y²) is independent of path on R² 0. Find a function f(x, y) on R² 0 so that ∇f = (x/x² + y², y/x² + y²).
- 3. Folland §7.5, #9.
- 4. Folland, §7.5, #13.
- 5. Folland, $\S7.5, \#14$.
- 6. Prove that

$$\int_0^1 (1-t^4)^{-1/2} dt = \frac{\Gamma(\frac{5}{4})\sqrt{\pi}}{\Gamma(\frac{3}{4})}.$$

- 7. Let f be a 2π -periodic function and let a be a fixed real number and let a new function g be defined by g(x) = f(x - a). What is the relation between the Fourier coefficients $\hat{f}(n)$ and $\hat{g}(n)$?
- 8. Find the Fourier series of

$$\frac{1-r^2}{1-2r\cos x+r^2}$$

where $0 \le r < 1$. (You don't need to integrate.)

- 9. Let f be a 2π -periodic, piecewise smooth function. Let $\hat{f}(n)$ be the complex Fourier coefficients of f. Show that there is a constant M (which will depend on f) such that $|\hat{f}(n)| < M/|n|$ for all $n \neq 0$. Do **not** assume f is continuous.
- 10. Suppose f_k is a sequence of Riemann integrable functions on $[0, 2\pi]$ such that $\lim_{k \to \infty} \int_0^{2\pi} |f_k f| = 0$. Prove that the Fourier coefficients satisfy $\lim_{k \to \infty} \hat{f}_k(n) = \hat{f}(n)$ for each n.

Sample Problems

11. Suppose f and g are 2π -periodic and Riemann integrable on compact subsets of **R**. Suppose also that f(x) = g(x) in a neighborhood of a point x_0 . Suppose that the Fourier series for one of the functions converges at x_0 . Prove that the other series converges and

$$\sum_{-\infty}^{\infty} \widehat{f}(n) e^{inx_0} = \sum_{-\infty}^{\infty} \widehat{g}(n) e^{inx_0}.$$

12. There may be homework problems or example problems from the text on the midterm.