Math 335 Sample Problems

One notebook sized page of notes (one side) will be allowed on the test. You may work together on the sample problems – I encourage you to do that. The test will cover 4.5, 4.6, and chapters 6 and 7. The midterm is on Monday, February 11. We have covered a lot of material. This is an extensive list of problems but I will ask only easy versions of these problems. I will not ask questions from sections 4.5, 7.5, and 7.6.

- 1. Let f(x) satisfy $0 \le f(x) \le f(y)$ if $x \ge y$. Suppose $\int_1^\infty f(x) dx$ converges. Prove $\lim_{x \to +\infty} x f(x) = 0$.
- 2. Assume $a_n \geq 0$ for all $n \geq 1$. Prove that if $\sum_{1}^{\infty} a_n$ converges then $\sum_{1}^{\infty} \sqrt{a_n a_{n+1}}$ converges. Give an example of a sequence $a_n \geq 0$ such that $\sum_{1}^{\infty} \sqrt{a_n a_{n+1}}$ converges and $\sum_{1}^{\infty} a_n$ diverges.
- 3. Prove that if $\sum_{1}^{\infty} a_n$ converges then $\sum_{1}^{\infty} \frac{\sqrt{a_n}}{n}$ converges. (Assume $a_n \ge 0$.)
- 4. Let x_n be a convergent sequence and let $c = \lim_{n \to \infty} x_n$. Let p be a fixed positive integer and let $a_n = x_n x_{n+p}$. Prove that $\sum a_n$ converges and

$$\sum_{1}^{\infty} a_n = x_1 + x_2 + \dots x_p - pc.$$

- 5. Suppose $a_n > 0$, $b_n > 0$ for all n > 1. Suppose that $\sum_{1}^{\infty} b_n$ converges and that $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$ for $n \geq N$. Prove that $\sum_{1}^{\infty} a_n$ converges.
- 6. Let S be the set of all positive integers whose decimal representation does not contain 2. Prove that $\sum_{n \in S} \frac{1}{n}$ converges.
- 7. Prove that $\int_0^\infty \cos x^2 dx$ converges, but not absolutely.
- 8. Let $a = \lim_{n \to \infty} a_n$. Prove that $\lim_{n \to \infty} \frac{a_1 + \dots + a_n}{n} = a$.
- 9. Decide if the following integrals converge conditionally, converge absolutely, or diverge.

(a)
$$\int_{-\infty}^{+\infty} x^2 e^{-|x|} dx$$

$$\int_0^\pi \frac{dx}{(\cos x)^{\frac{2}{3}}}$$

(c)
$$\int_{1}^{\infty} \frac{\sin(1/x)}{x} dx$$

- 10. Let f and g be integrable on [a, b] for every b > a.
 - (a) Prove that

$$(\int_{a}^{b} |fg|)^{2} \le \int_{a}^{b} f^{2} \int_{a}^{b} g^{2}.$$

(b) Prove that if $\int_a^\infty f^2$ and $\int_a^\infty g^2$ converge then $\int_a^\infty fg$ converges absolutely.

- 11. (a) Suppose $\sum_{1}^{\infty} a_n$ converges. Fix $p \in \mathbb{Z}^+$. Prove that $\lim_{n \to \infty} (a_n + a_{n+1} + \dots a_{n+p}) = 0$.
 - (b) Suppose $\lim_{n\to\infty} (a_n + a_{n+1} + \dots a_{n+p}) = 0$ for every p. Does $\sum_{n=1}^{\infty} a_n$ converge?
- 12. Let $a_n > 0$ and suppose $a_n \ge a_{n+1}$. Prove that $\sum_{1}^{\infty} a_n$ converges if and only if $\sum_{1}^{\infty} a_{3n}$ converges.
- 13. Suppose f_n is a sequence of continuous functions that converges uniformly on a set W. Let p_n be a sequence of points in W that converges to a point $p \in W$. Prove that $\lim_{n\to\infty} f_n(p_n) = f(p)$.
- 14. Prove that $\sum_{n=0}^{\infty} \frac{x}{(1+|x|)^n}$ converges for all x, but the convergence is not uniform.
- 15. Assume $p \ge 1$, $q \ge 1$. Prove that

$$\int_0^1 \frac{t^{p-1}}{1+t^q} dt = \frac{1}{p} - \frac{1}{p+q} + \frac{1}{p+2q} \dots$$

Give careful justification of any manipulations.

- 16. Suppose $a_n > b_n > 0$, $a_n > a_{n+1}$ and $\lim_{n \to \infty} a_n = 0$. Does $\sum_{1}^{\infty} (-1)^n b_n$ converge? Give a proof or a counterexample.
- 17. Prove that $\sum_{n=1}^{\infty} \frac{\cos nx}{n}$ converges uniformly for $x \in [a, b], 0 < a < b < 2\pi$, but does not converge absolutely for any x.
- 18. Prove that $\sum_{1}^{\infty} (-1)^n \frac{\sin nx}{n}$ converges uniformly on $\{|x|<1\}$ to a continuous function.

- 19. Let f_n be a sequence of functions defined on the open interval (a,b). Suppose $\lim_{x\to a^+} f_n(x) = a_n$ for all n. Suppose $\sum_{1}^{\infty} f_n$ converges uniformly on (a,b) to a function f. Prove that $\sum_{1}^{\infty} a_n$ converges and $\lim_{x\to a^+} f(x) = \sum_{1}^{\infty} a_n$. Do not assume f_n is continuous on (a,b).
- 20. Suppose the series $\sum_{1}^{\infty} a_n$ converges. Prove that $\sum_{1}^{\infty} \frac{a_n}{n^x}$ converges for $x \geq 0$. Let $f(x) = \sum_{1}^{\infty} \frac{a_n}{n^x}$. Prove that $\lim_{x \to 0^+} f(x) = \sum_{1}^{\infty} a_n$.
- 21. We have covered the following:
 - (a) Improper single and multiple integrals
 - (b) Convergence and divergence of a series
 - (c) Comparison test
 - (d) Integral test
 - (e) Cauchy condensation test
 - (f) Root test and ratio test
 - (g) Absolute and conditional convergence of a series
 - (h) Dirichlet's test
 - (i) Abel's test and theorem
 - (j) Uniform convergence of a sequence or series of functions
 - (k) Weierstrass M-test
 - (1) Continuity of a uniform limit of continuous functions
 - (m) Integration and differentiation of a sequence or series
 - (n) Power series
 - (o) Radius of convergence of a power series
 - (p) Integration and differentiation of a power series
- 22. There may be homework problems or example problems from the text on the midterm.