Math 335 Sample Problems

One notebook sized page of notes will be allowed on the test. The test will cover through $\S7.6$

- 1. Let be a sequence of continuous functions in I = [a, b] and suppose $f_n(x) \ge f_{n+1}(x) \ge 0$ for all $x \in I$. Suppose $\lim_{n \to \infty} f_n(x) = 0$ for all $x \in I$ (point-wise convergence to 0). Is the convergence uniform? Give a proof or a counterexample.
- 2. Let f_n be a sequence of Riemann integrable functions on interval I = [a, b]. Suppose f_n converges uniformly to a limit f on I. Prove that f is Riemann integrable.
- 3. Prove that $\sum_{n=0}^{\infty} \frac{x}{(1+|x|)^n}$ converges for all x, but the convergence is not uniform.
- 4. Assume $p \ge 1$, $q \ge 1$. Prove that

$$\int_0^1 \frac{t^{p-1}}{1+t^q} dt = \frac{1}{p} - \frac{1}{p+q} + \frac{1}{p+2q} \dots$$

Give careful justification of any manipulations.

5. Suppose $a_n > b_n > 0$, $a_n > a_{n+1}$ and $\lim_{n \to \infty} a_n = 0$. Does $\sum_{1}^{\infty} (-1)^n b_n$ converge? Give a proof or a counterexample.

- 6. Prove that $\sum_{n=1}^{\infty} \frac{\cos nx}{n}$ converges uniformly for $x \in [a, b], 0 < a < b < 2\pi$, but does not converge absolutely for any x.
- 7. Prove that

$$\int_0^1 \left(\frac{\log(1/t)}{t}\right)^{1/2} dt = \sqrt{2\pi}.$$

- 8. Prove that $\sum_{1}^{\infty} (-1)^n \frac{\sin nx}{n}$ converges uniformly on $\{|x| < 1\}$ to a continuous function.
- 9. Folland §7.5, #9.
- 10. Let f_n be a sequence of functions defined on the open interval (a, b). Suppose $\lim_{x \to a^+} f_n(x) = a_n$ for all n. Suppose $\sum_{1}^{\infty} f_n$ converges uniformly on (a, b) to a function f. Prove that $\sum_{1}^{\infty} a_n$ converges and $\lim_{x \to a^+} f(x) =$ $\sum_{1}^{\infty} a_n$. Do not assume f_n is continuous on (a, b).
- 11. Folland, $\S7.5$, #14.
- 12. Suppose the series $\sum_{1}^{\infty} a_n$ converges. Prove that $\sum_{1}^{\infty} \frac{a_n}{n^x}$ converges for $x \ge 0$. Let $f(x) = \sum_{1}^{\infty} \frac{a_n}{n^x}$. Prove that $\lim_{x \to 0^+} f(x) = \sum_{1}^{\infty} a_n$.
- 13. You will need to know the definitions of the following terms and statements of the following theorems.
 - (a) Absolute and conditional convergence of a series
 - (b) Dirichlet's test
 - (c) Abel's test and theorem

- (d) Uniform convergence of a sequence or series of functions
- (e) Weierstrass M-test
- (f) Continuity of a uniform limit of continuous functions
- (g) Integration and differentiation of a sequence or series
- (h) Power series
- (i) Radius of convergence of a power series
- (j) Integration and differentiation of a power series
- (k) Improper integrals dependent on a parameter
- (l) Uniform convergence of an improper integral
- (m) Integration and differentiation of an improper integral
- (n) Gamma function
- 14. There may be homework problems or example problems from the text on the midterm.