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If we make some assumptions on the coefficients we can say some very interesting things about a
trigonometric series. These statements are best made in the context of the Lebesgue integral. Here are
a few of the differences between the Lebesgue (L) and Riemann integral (R). The usual notation in the
Lebesgue case is the following. By f ∈ Lp(I) we mean that fp is Lebesgue integrable on I, which might
be an infinite interval. By definition this is equivalent to |f |p ∈ L1(L). This is similar to saying that the
only kind of convergence we will discuss is absolute convergence. Here are a few facts. Let I = [a, b] be a
compact interval.

1. Let p ≥ 1. f ∈ Lp(I) =⇒ f ∈ L1(I), (Lp ⊂ L1). But L1 6⊂ Lp, if p > 1.

2. f ∈ L2(I) ⇐⇒
∑

|f̂(n)|2 < ∞. This is the Riesz-Fischer Theorem.

Riemann integration is quite different. For example, we know that f ∈ R(I) =⇒ f2 ∈ R(I). This is the
opposite of the Lebesgue case. Also, such functions as x−1/2 are not Riemann-integrable since they are not
bounded, but they are Lebesgue integrable. In the following theorem, a Fourier series is a Lebesgue-Fourier
series, not a Riemann-Fourier series.

Here is a list of results (taken from [1] and [2]). Let b1 ≥ b2 ≥ · · · ≥ 0, lim
n→∞

bn = 0.

Theorem 1. Let

f(x) =
∞∑
1

bn sinnx (1)

1. The following are equivalent

(a) nbn < K is independent of n;

(b) |
N∑
1

bn sinnx| < M , independent of N ;

(c) (1) is the Fourier series of a bounded function;

(d) f is bounded.

2. The following are equivalent

(a) lim
n→∞

nbn = 0;

(b) (1) converges uniformly;

(c) (1) is the Fourier series of a continuous function;

(d) f is continuous.

3. The following are equivalent

1



sine 2

(a)
∞∑
1

bn

n
< ∞;

(b) (1) converges in L1([−π, π]);

(c) (1) is the Fourier series of a function in L1([−π, π]);

(d) f ∈ L1([−π, π]).

Theorem 2. Let an ≥ 0. Then the following are equivalent

1.
∑

an cos nx converges for all x.

2.
∑

an converges.

3.
∑

an cos nx converges uniformly on R.
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