CAUCHY-BINET

JANUARY 6, 2009

Theorem 0.1. (Cauchy-Binet) Let A be a $k \times n$ matrix and B be an $n \times k$ matrix. Then

$$
\operatorname{det}(A B)=\sum_{J} \operatorname{det}(A(J)) \operatorname{det}(B(J))
$$

where $J=\left(j_{1}, j_{2}, \ldots, j_{k}\right), 1 \leq j_{1}<j_{2}<\cdots<j_{k} \leq n$, runs through all such multi-indices, $A(J)$ denotes the matrix formed from A using columns J (in that order), and $B(J)$ denotes the matrix formed using rows J of B in that order.

Proof. By definition of matrix product

$$
\begin{aligned}
\operatorname{det} A B & =\operatorname{det}\left[\begin{array}{ccc}
\sum_{j_{1}=1}^{n} a_{1 j_{1}} b_{j_{1} 1} 1 & \ldots & \sum_{j_{k}=1}^{n} a_{1 j_{k}} b_{j_{k} k} \\
\vdots & \vdots & \vdots \\
\sum_{j_{1}=1}^{n} a_{k j_{1}} b_{j_{1} 1} & \ldots & \sum_{j_{k}=1}^{n} a_{k j_{k}} b_{j_{k} k}
\end{array}\right] \\
& =\sum_{j_{1}, \ldots, j_{k}=1}^{n} \operatorname{det}\left(A\left(j_{1}, j_{2}, \ldots, j_{k}\right) b_{j_{1} 1} b_{j_{2} 2} \ldots b_{j_{k} k},\right.
\end{aligned}
$$

by the multi-linearity of the determinant. Since $\operatorname{det}\left(A\left(j_{1}, j_{2}, \ldots, j_{k}\right)=0\right.$ if the indices j_{i} are not all distinct, only those sets of indices occur in the sum. For a fixed multi-index $J^{\prime}=\left(j_{1}^{\prime}, j_{2}^{\prime}, \ldots, j_{k}^{\prime}\right)$ with $1 \leq j_{1}^{\prime}<j_{2}^{\prime}<\cdots<j_{k}^{\prime} \leq n$ and J some multi-index with these indices in some order, let $j_{i}^{\prime}=j_{\sigma(i)}$ where σ is a permutation of $[n]$. Then

$$
\operatorname{det}\left(A\left(j_{1}, j_{2}, \ldots, j_{k}\right)=\operatorname{sgn}(\sigma) \operatorname{det}\left(A\left(j_{1}^{\prime}, j_{2}^{\prime}, \ldots, j_{k}^{\prime}\right)\right.\right.
$$

Now let J^{\prime} be fixed, and sum over all J which are permutations of J^{\prime}. Let τ be the inverse of σ. Then $j_{i}=j_{\sigma \tau(i)}=j_{\tau(i)}^{\prime}$. So the sum multiplying $\operatorname{det}\left(A\left(j_{1}^{\prime}, j_{2}^{\prime}, \ldots, j_{k}^{\prime}\right)=\operatorname{det}\left(A\left(J^{\prime}\right)\right)\right.$ is

$$
\begin{aligned}
& \sum_{\sigma} \operatorname{sgn}(\sigma) b_{j_{\tau(1)}^{\prime}} b_{j_{\tau(2)}^{\prime}} \ldots b_{j_{\tau(k)}^{\prime}} k \\
& =\sum_{\tau} \operatorname{sgn}(\tau) b_{j_{\tau(1)}^{\prime}} b_{j_{\tau(2)}^{\prime}} \ldots b_{j_{\tau(k)}^{\prime}} k \\
& =\operatorname{det} B\left(J^{\prime}\right) .
\end{aligned}
$$

Hence

$$
\operatorname{det}(A B)=\sum_{J^{\prime}} \operatorname{det}\left(A\left(J^{\prime}\right)\right) \operatorname{det}\left(B\left(J^{\prime}\right)\right) .
$$

Corollary 0.1.

$$
\operatorname{det} A A^{T}=\sum_{J}(\operatorname{det} A(J))^{2} .
$$

Here's an application.
Corollary 0.2. Let Π be a k-parallelepiped in \mathbb{R}^{n} and let Π_{J} be the orthogonal projection of Π onto the k-dimensional subspace spanned by the x_{J} axes. Let $m_{J}=\mu\left(\Pi_{J}\right)$ be the k-dimensional measure of this k-parallelepiped. Then

$$
\left(\mu(\Pi)^{2}=\sum_{J} m_{J}^{2}=\sum_{J} \mu\left(\Pi_{J}\right)^{2} .\right.
$$

Proof. Recall that if $v_{1}, v_{2}, \ldots, v_{k}$ are the k row vectors which are the spanning edges of Π and V is the $k \times n$ matrix defined by

$$
V=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{k}
\end{array}\right],
$$

then the measure of Π is $\sqrt{\operatorname{det} V V^{T}}$. Now use the previous corollary and interpret each term in the sum as the square of the measure of a k-parallelepiped in \mathbb{R}^{k}.

This is a sort of Pythagorean theorem, generalizing the length (1-dimensional measure) formula for a line segment in \mathbb{R}^{n}.
Application 0.1. Let the surface S in \mathbb{R}^{4} be defined by the parameterization $(x, y) \rightarrow(x, y, f(x, y), g(x, y)),(x, y) \in D \subset \mathbb{R}^{2}$. Then the area of S is

$$
\int_{D}\left(1+f_{x}^{2}+f_{y}^{2}+g_{x}^{2}+g_{y}^{2}+\left(\frac{\partial(f, g)}{\partial(x, y))}\right)^{2}\right)^{1 / 2} d x d y
$$

The general result for this type of parameterization is as follows. Let $\left(x_{1}, x_{2}, \ldots, x_{k}\right)=$ $x_{K} \in D \subset \mathbb{R}^{k}$ and let $\left(f_{1}\left(x_{K}\right), \ldots, f_{m}\left(x_{K}\right)\right)=f_{M}\left(x_{K}\right)$ be an M-tuple of differentiable functions defined on D. Let $\mathcal{M}=\left\{\left(x_{K}, f_{M}\left(x_{K}\right): x_{K} \in D\right\}\right.$. Then the k-dimensional measure of \mathcal{M} is

$$
\int_{D}\left(1+\sum_{I, J, 1 \leq|I|=|J| \leq k}\left(\frac{\partial f_{I}}{\partial x_{J}}\right)^{2}\right)^{1 / 2} d x_{K}
$$

