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tn this note we are concerned with unbounded self-adjoint operators in a Hilbert 
space. Denoting such an Operator by A we give a direct and geometric 
demonstration of the facts associated with the formula 

A =  ~ 2dE(2). 
- o o  

That is, we establish directly the well-known spectral theorem for unbounded 
self-adjoint operators using only simple geometric intrinsic properties of Hilbert 
space. 

Of course the fundamental facts about the spectral representation of bounded 
as well as unbounded operators have been known in substance since the 
appearance in 1906 [3] of Hilbert's memoir on integral equations and in 1929 [8] 
of von Neumann's fundamental paper on unbounded operators. Since that time 
many papers have been published in this subject using a variety of methods. Some 
of these methods apply only to bounded operators, while others are suited to the 
general (unbounded) case. However, all but a few of these methods use techniques 
and principles which lie outside of Hilbert space theory proper, such as Helly's 
selection principle, Riesz's second representation theorem and so on. For  further 
examples of technique and for a comprehensive list of references on the spectral 
theorem we refer the reader to [1], p. 927 and [5]. 

It was not until 1935 that Lengyel and Stone [5] gave a new proof of the 
spectral theorem which was strictly elementary in the sense that it depended only 
upon intrinsic properties of Hilbert space. Their paper dealt with the case of 
bounded operators and the authors remarked that they could not handle the 
general case in the same way. In their introduction they wrote: "Indeed our 
method, which requires the study of powers of an operator, is not suited to the case 
of unbounded operators" ([5], p. 853). Just this sentence stimulated the author to 
try to handle the general case in the same way and indeed it is possible. 

The fundamental idea of our proof of the spectral theorem as well as that of 
Lengyel and Stone consists in considering invariant subspaces 

F(A,2)= {xenlxeD(A"), ]lA"xl[ <2" .  Itxll for n = 1,2, 3 .... }. 
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But now, in the unbounded case, one main difficulty arises, namely to prove the 

density of U F(A,2), whereas this is trivial for bounded operators A. This 

difficulty is overcome in the fundamental Lemma 4. On the other hand Lemma 4 
itself is critically dependent on Lemma 3 which enables us to extend well-known 
properties (Lemma 2) of finite dimensional symmetric transformations to un- 
bounded self-adjoint operators by a simple approximation process (compare 
corollary). For  Theorem 1 we give the announced geometric proof of the spectral 
theorem. In case A is semibounded, for instance A >0,  the spectral family of A can 
be defined immediately by the formula 

E(2)={PrOjF~a,~ if 2 ~ 0  
2 < 0 ,  

whereas in the non-semibounded case a simple limiting process is needed [for 
details see formula (18)]. In addition we want to remark that the uniqueness proof 
of the spectral family given here can be carried over literally to the case of 
unbounded normal operators and then yields a short proof of a famous theorem of 
Fuglede (compare the concluding remarks, [2], pp. 66-69 and [9], Theorem 1.16). 
Finally in Theorem II we show, by analysing our proof of the spectral theorem, 
that any closed symmetric operator possesses a unique maximal self-adjoint p a r t .  

In the following the (usual) notations and definitions are used in the same way 
as in the book "Perturbation Theory for Linear Operators" by Kato [4]. 

For closed linear operators A with domain D(A) in the complex HUbert space 
(H, ( -, -))  let us consider 

D°~(A): = (~ D(A n) 
n = l  

and for any real number 2 > 0 the set 

F(A, 2) :=  {x~D~(A)I IIAnxII <2".  Ilxll for n = 1, 2, 3 .... }. (1) 

In general F(A, 2) is not a closed linear subspace of H, but in the case where A is a 
symmetric closed operator, we can prove this. 

Lemma 1. Suppose A is a symmetric closed linear operator in the Hilbert space H 
and 2 is a non-negative real number. Then 

i) F(A, 2) is a closed linear subspace of H, which is left invariant by the operator A. 
ii) Every bounded linear operator B satisfying B. A C A . B maps F(A, 2) into itself; 

similarily we have B*(F(A, 2)±C F(A, 2) ±. 

Remarks. 1) It should be noticed that Lemma 1 remains valid even for normal 
operators A, as is seen immediately by inspecting the proof of Lemma 1. 

2) In case A is bounded we refer to [2], p. 66, for Lemma 1. 

Proof First the case 2 = 0 is trivial, because F(A, 0) is equal to the null space of A, 
which obviously is a closed linear subspace. Now suppose 2 > 0. 
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Similarily to F(A, 2) we consider the space 

G(A, 2): = {xe D°°(A)I There  exist a c = c(x) > 0 such 

that  [IA"xll<2"c for n = 1 , 2 , 3 , . . . }  . (2) 

Clearly G(A, 2) is a linear subspace  of H and F(A, 2)C G(A, 2). Suppose  there is an 
xeG(A,2) belonging not  to F(A,2) with tlxlL =1 .  Then there exists an integer m 

1 
such that  llAmxll > 2  m. With S: = ~ A  m we have IISxlt > 1. Now for every integer l 

the following inequalities hold 

i!S2,xll 2 = (S2,x, S2,x) = (x,  S 2~ + :x) < !IS 2~ + 'xI! 

hence llS2'xll > I[Sxtt 2' and consequent ly  the sequence (ltS2'x[[) tends to infinity. 
This contradicts  the assumpt ion  xeG(A,2), so we must  have F(A,2)=G(R,2), 
which shows that  F(A, 2) is a linear subspace.  

In order  to prove  the closedness of F(A, 2) we consider a sequence (x,) < F(A, 2), 
x,--+x. Then x , , -XmeF(a,2  ) and for every integer 1 we have 

IIAtx,-  A t x J  = IIAt(x,- x,,)II <=)]" ¢lx,- x,~ll • 

Hence there is a y~e H such that  AZx,--+y~. The closedness of  A implies by induction 
that  xe  D(A z) and YL = Atx for each integer l. This means xE D<(A). The inequalities 
]]Alx, lt __<2111x, ll yield llAIxjl <2tt]xll as n--+oo. So we have proved xeF(A,)d. To 
show A(F(A,2))CF(A,2) we take xeF(A,2),  then tlA"(Ax)II = ItA"+lxtl <2"+lllxll 
=,t"-  (2- Ilx ]1) which yields Axe  G(A, 2) = F(A, 2). 

Suppose  now B is a bounded  linear ope ra to r  satisfying B-A C A . B  and let be 
xeF(A,2).  By induction we conclude BxeD<(A) and A"Bx=BA"x for every 
integer n. Then IIA':(Bx)[{ = I[B(A"x)I[ < IIBll " IlA"x[[ < I[BI[ -2". llxl[ and  Bx~ F(A,2) 
is proved.  The inclusion B*(F(A, 2)-)C F(A, 2) ~ now is a trivial consequence.  

In the case of  finite dimensional  Hi lber t  spaces H we have the following 
descript ion of F(A, 2)-. 

Lemma 2. Suppose A is a symmetric linear operator in a finite dimensional Hilbert 
space H. Then we have for all xeF(A,  2)-, x 4=O, and all 2 > 0 ,  

i) IIAxll >~l[xll, 
ii) (Ax, x);>21lxIl 2 if A>O. 

Proo£ Ad ii). Define ~ : =  min {(Ax,  x) l  Nxll = 1, xeF(A,2~}  >0. It is clear that/~ 
is an eigenvalue of  AIF(A,2)-, hence F(A,I~)c'~F(A,2)-4=O. Because of 
F(A, IJ)KF(A,2) i f /~<2 ,  we must  h a v e / ~ > 2 ,  which shows ii). 

Ad i). We proceed in a similar way and define ]2:=min{ltAxllll lxll=l,  
xeF(A,2)L}. Due to p2 = m i n  {(AZx, x)t i lxt{ = l, xeF(A,2p}  we know that  ]2 2 is an 
eigenvatue of  B 2, where B : =  A[F(A, 2)-. The  equality 

0 = det (B z - 1,2) = det ( B -  p)- det (B + ]2) 

tells us that  /z or  - ]2  is an eigenvalue of B. F r o m  this we conclude 
F(A,]2)c~F(A,2)L+-O. Similarly as above  we have ~ > 2 ,  hence the statement.  [ ]  
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The following approximation-lemma is one key to our proof of the spectral 
theorem for unbounded operators, because it enables us to extend the decisive 
inequalities of Lemma 2 to the case of unbounded symmetric operators. 

Lemma 3. Suppose A is a closed symmetric operator in a Hilbert space H and 2, # 
are non-negative real numbers. Then for every xeF(A,p)nF(A,2)  L there is a 
sequence (A.) of symmetric operators A. : H . ~ H .  defined in the finite dimensional 
spaces H. C H and a sequence (x.) of Elements x. belonging to H. in such a way that 

x. e F(A., ~.~- 

l im llx.-- xtl = 0 =  l im l iA.x .-  Axl!. (3) 

I f  A > O, then A. can be chosen non-negative. 

Remark. In principle the idea of Lemma 3 goes back to Lengyel and Stone [5]. 

Proof We take xe F(A, f~)c~F(A, 2) ~ and fix it for the rest of the proof. Let us define 

H.  :=l inear  hull {x, Ax,... ,A"x} for n = l , 2 , . . . ,  

H~" =closed linear hull {A"xJn =0, 1, 2 .... } . 

A short calculation shows A(H~)C Ha C F(A, I~)c~F(A, 2) ~ and x, Axe H. C H .+I ;  

d i m H . < n + t ;  U H.=H~.  
n = l  

Now we introduce the operators 

P . '=ProjH. ,  P :=Pro jn~ ,  ~[ . '=  P.AP., A . : =  ~[.IH. • 

We note that A., X. are symmetric and bounded. In case A >0  we have A. >0  too. 
Because of P.&P and ItAIH~]] <p,  it is easy to see that ~ s A.--*PAP and more 

generally .~t & (pAp)t for all integers l. This yields the relation 

l im Ilftly-AtyN = 0  ( y e l l s ) ;  (4) 

according to Riesz's decomposition theorem (relative to H.) we get sequences 
(x.) C F(A., 2) ~, (y.) C F(A., 2) such that 

x = x . + y . .  

Since }[x[}2= llx.ll2 + tfy.l} z, the sequence (y.) is bounded. Hence there exists an y 
such that without loss of generality 

y. w , yeH~CF(A,)?~. (5) 

Our aim is to show y = 0  and for doing that it is sufficient to prove yeF(A, 2). For  

all integers l we have i1Alytl 2 = (Aly, A~y) = (y, AZ.~y) = lim (y. ,  . ~ 4 y )  
( 4 ) , ( 5 )  n ~  

4 2  -I = lim ( . y . , y ) N  lira sup IIA.ZZy.J I • IlyJt 
n~* el? n ~ c ~  

= lim sup 2z'~Ily.II. JlYll <2z't]Ixll " IlYll • 
t l ~ c o  

Hence ye G(A, 2) = F(A, 2), which yields y = 0. 
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Because of l l x - x ,  rl 2 =/ly, H 2 = ( x , y , 5 ~ ( x , 0 5 = O  

Ax = P,APnx 

and 
I IA .x . -  Axlt = IIPnAP,,x.- P.AP.xll 

<-_ IIP,AP,]4 • I l x , -  xl[ 

<~'FIx , -x l l  • 

We finally arrive at jim IIx,-xll = 0 =  Jim tIA.xn-AxlI.  [] 

Corollary. Let A be a closed symmetric operator in H, and 2 ,#>0  real numbers. 
Then for all xe  F(A,p)c~F(A, 2) ~ 

i) [IAxl] >_-2llx[I, 
ii) (Ax ,  x)>=2llxlL 2 if A>=O. 

Proof. This is a simple consequence of Lemmas 2 and 3 and a limiting 
process. [] 

The following lemma is the other decisive step to our proof of the spectral 
theorem. 

Lemma 4. Let A be a closed symmetric operator in H. Then the following 
statements are equivalent" 

i) ~) F(A, n) is dense in H, 
n = l  

ii) A is self-adhoint. 

Remark. Lemma 4 is closely related to Nelson's theorem [7] on analytic vectors 
(see also [6]). 

Proof. Suppose ~) F(A, n) is dense in H. Clearly A CA*, so we have to show 
n = l  

D(A*) C D(A). Define Pn : = Pr°Jv~a,,) and take an xe D(A*), then P,x-& x. Because of 

A*x = A*(x - PnX) + APnX 

( A*(x - PnX), APnx)  = ( x  - P,x, A2PnX) = 0 

we have ][APnX[[ _-<][A*x][. Hence without loss of generality (AP, x) is weakly 
convergent. As an immediate consequence of the weak-closedness of A we have 
x ~ D(A). 

Now, suppose A is self-adjoint. We take a 2~(F \IR and define with 
R(A, s): = (A - s)- 1 the symmetric bounded operator 

B: = R(A, 2 ) -  R(A, 2*) 
2-- 2* = R(A, 2*). R(A, 2) 

(here we make use of the fact that H is a complex Hilbert space). We wish to prove 
for all ~ > 0 

F(B,e)±CF(A,,2,+ IIR(A, 2),I), (6) 
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For ~ >0  we consider the bounded operator 

B~: F(B, e) ~ ~F(B,  e~-, B~x : = B x .  

Notice that F(B, e) L is an invariant subspace relative to B. According to our 
corollary (with 2 : =  2, # : =  11/3tl) we get 

IIB~xll >~:llxlt for all x~F(B,e) ~ . (7) 

Because of (7) it is clear, that B~ is one-to-one and has closed range R(B,). Since B e 
is symmetric, R(B~) = N ( B j  = F(B, e) L ; hence 
x ~ F(B, ~)~ there exists an x'e  F(B, e) ~ with 

x = B,x' = Bx' = R(A, 2*). R(A, 2)x'e D(A), 

Ax = 2*x + R(A, 2)x' . 

B~ is bijective. Now for every 

(8) 

(9) 

Since B commutes with R(A,2)*=R(A,2*) we conclude R(A,2)x'~F(B, e f  
according to Lemma l ii), hence Ax~F(B,e) ~. Iterating the preceding method, we 
get A"xeF(B, ~)LC D(A), which means x e D~(A). 

Using (7)--(9) we estimate IIAxll by 

II/xll <121. Ilxlt + lie(A, )-)11' IIx'lb 

< t21, ii xll + 11R(A, 2)11 " II B,x'  II 

IIe(/ ,2)l l  
<121" IIxlI 4 • Ilxl! • 

Iterating this inequality we obtain x ~ F ( A ,  1 2 I + "  ItR(A,2)tl}_ " and we have shown 
formula (6). \ e / 

The rest of the proof now is a simple formal manipulation. For integers n > 121 

IIR(A, 2)11 and (6) becomes we p u t ~ , . -  n-12l 

F(B, e,)L C F(A, n) 

which gives us 

.>(~zlF(A,n) L C, £-~a IF(B, s,). (10) 

Since ~,~0, we have , >la('] IF(B,e,)=0, for B is one-to-one. Now (10) shows us, that 

0 F(A,n) is dense in H. [] 
n = l  

Remarks. 1) In the case the operator A is semibounded, the proof of Lemma 4 
simplifies considerably. Suppose A > 1 (without loss of generality), then (6) can be 
replaced by the handier formula 

F(A- 1,~- 1)L CF(A,~). (11) 

2) If A is a normal operator, assertion i) of Lemma 4 remains valid as is easily 
seen by the inclusion F(A*A, e2)CF(A, e) and the self-adjointness of A*A. 
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Probably  the next lemma is well-known. We state it here, because we didn't 
find a suitable reference. 

Lemma 5. Let A be a symmetric closed linear operator in H and (P,) an increasing 
sequence of projections such that R(P,) C D(A), AP, = P, AP,, and P,--% Id. 

Then the following assertions hold: 

D(A) = {x ~ HI (AP,x) converges} = {x ~ H[(][ AP,x []) converges} 
( 1 2) 

Ax = s- 2ina AP,x ]o r all x ~ D(A) . 

Proof Lemma 5 is an immediate consequence of the identities 

]]AP1x-AP,,xH2= HAPIxII 2 -  ][APnx]] 2 ( x E H ,  l>n), (13) 

IlAx-AP.xll z= IlAxl[ 2 -  ]lAP,xll 2 (x~D(A)) (14) 

which follow easily from the Pythagorean  theorem. 
Let x be in D(A). F r o m  (14) we conclude ]lAP,x[] < I]Ax[I and (13) shows that the 

sequence (I]AP,x ]l) is increasing, hence convergent.  Equat ion (13) now tells us that 
(AP, x) is a Cauchy-sequence,  so it converges to Ax due to the closedness of A. 
The other  inclusions are obvious.  [ ]  

After these prepara tory  lemmas we are able to give our  direct proof  of the 
spectral theorem for unbounded  self-adjoint operators.  

Theorem I. Every self-adjoint operator A in the Hilbert space H admits one and 
only one spectral family ( E ( 2 ) ) ~  such that 

D(A)={x~H ~ 22d(E(2)x,x)< oo} 

(Ax, y) = ~ 2d(E(2)x, y) (xe D(A), y~H) . 

Proof Uniqueness:  Suppose (E(2)) ;~  is a spectral family of A. First we prove for 
all 4 > _ _ 0  

F(A, 2) = R(E [ -  4, 2 ] ) .  (15) 

Let x be in R ( E [ - 4 , 4 ] ) ,  then x=E[-4,4]xeD°°(A)  and 

I[A"x]] 2=  ~ #2""d(E(p)x,x)<42" ~ d(E(#)x,x)=22""[lxf[ 
[ -  z,.z] [-).,z] 

so xeF(A, 4). Now suppose x is an element of F(A, 4). As a consequence of Lemma 
li)  and the preceding step, we have x - E [ - 4 , 4 ] x e F ( A , 4 ) .  We put y = x  
- E [ - 2, 4]x and get 

O~ []AyH2-22]lyH 2= ~ (p2-42)d(E(l~)y,y). 
~\ [ -  ~,.~] 

This shows O = ( E ( I R  \ [ - 4 , 4 ] ) y , y ) = H y [ ]  2, so x = E [ - 4 , 2 ] x  and 
x ~ R(E [ - 2, 4]) is proved. 
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In order to complete the proof of uniqueness we only have to state that for all 
2,/aelR, 2 < #  the following equality holds 

R(E[2 ,#] )=F(A  2+P2 , / 1 2 2  ) .  (16) 

Existence : For any integer n let be P.  : = Projv.. .)and A. : =AIF(A, n). Then A. is a 
symmetric operator with tlA.tl N n, and 

R(Pn)CD(A ) APn=PnAP. ,  Pn-~Id (17) 

holds due to Lemmas 1 and 4. We define 

E.(2):= {Pr°Jv~) +"'a+"~ ifif 2>2<_n-n (18) 

and obtain as an easy consequence 

E.(n)=P. ,  E . ( - n - e ) = O  for each e > 0  

E.(2)<E.(p) if 2__<p (19) 

E.(2) = s- lim E.(p). 

Next we establish the fundamental relations 

< A.x, y> = j 2d( E.(2)x, y> (20) 
R 

(x, ye F(A, n)). 
IIAnX] [ 2 = ~ )~2d<En(2)x ' y> (21) 

R 

Due to our preceding lemmas the proof of (20) and (21) now follows standard 
arguments. 

Let be xEF(A,n), 0 < e <  1 and define 2~:= - n + ( i - 1 ) e  for all O<i<k,  where 
the integer k is chosen in such a way that n < 2  k < n +e. With the abbreviations 
xi=En(~,i)x--En(2i_l)X for all 1 <_i<k, we have 

x 1 ~ F(A. + n, 21 + n) = N(A + n) (22) 

xl ~F(A.+n,21+n)nF(A.+n,25-1 +n) L ( 2 < i ~ k )  

k 
and x = ~ x i. 

5=1 
Our corollary yields (the case i =  1 is trivial) 

(2i- 1 + n). IJ xi JI 2 < <(A. + n)x i, x55 5 (2, + n). {I x5 li 2 

resp. 

(25_ 1 +n). ilxll I < II(A.+n)xsI I < ( 2 i + n  )- lIxsl I 

hence 

K ( A . -  4)x,, x,>l <~'  It x, II e 
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resp. 

t((A. + n)2xi-  (2i + n)2xi, xi)l < e (4n + 1)-tl xill 2 

Because of  (22) we get 

k --lk 5t A . x , x  2 ~ < (  ' < > - -  ~ti< Xi. ~ Xi> = A, --/~i)xi, x i 
i = 1  i 

k 
~12" 2 [[Xil{ 2=g'liX[[2 

i= 1 

resp. 

<(A.  k x,> +n)2X'X> - E (2i+n)2<Xi, <e: ' (4n+l ) ' l lx l [  2 
i = 1  

and finally 

<A.x, x> = S 2d(E,,(2)x, x>,  (23) 
F. 

( (A.  + rt)Zx, x )  = S (,~ + n)Zd(E.(2)x, x> (24) 
hR 

as e ~ 0 .  Now (23) and (24) imply (21) as well as (20), the latter by polarization. 
The  formula (20), which was just proven,  tells us that for l>  n the family 

(Et(2)IF(A, n))x~ is the spectral family of A., if we are able to prove E~(2) (F(A, n)) 
C F(A, n), but  this follows from the estimates 

II ArE~(,t)x II = tI(AyE,(;0xlP = I[ Et(;,) ( A y x  I/ 

<l[A~xlt<nrHxj] for xeF(A,n),  l > n .  

Hence (due to uniqueness) we get for any t>n  

Et(2)P. = E,~(2)P. = P,,E.(2) = E.(2) (25) 

and consequently 

II Et(2)x - E,(2)x t[ = 11ElOo)x -- E~Oo)P,x II <= tl x - P,x it • (26) 

Clearly E(2) :=  s - l im E,(2) exists uniformly with respect to 2elR, so [due to (17). 

(19)] (E(2))a~ . is a spectral family. 
As t ~ o o  we derive from (25) 

E(2)P. = E.(2) (27) 

and using (15) with A replaced by A t we get 

R(E~[-n,n])=F(A~,n)=F(A,n) if l > n .  

Thus 

E [  - n, n] = s- lira E l [ -  n, n] = P . .  (28) 
l-*oO 
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Picking x, yEH and using (17), (20), (21), (27), (28) we get 

( APox, y)  = ( AP.x, P.y)  = j 2d( E.(2)Pox, P.y)  
R 

= ~ 2d(E.(2)P,x, y)  = ~ 2d(E(2)P.x, y)  

= y5  
[ - n , n ]  

and similarily 

tIAP.xII 2= ~ 22d(E(2)x,x) .  
[ -n ,n]  

Let us now use Lemma 5 to state 

xeD(A)<:~(l!AP.xII 2) converges ~:~ .f 22d(E(2) x, x )  < ov . 
tR 

Together with (x 6 D(A ), y~ H) 

(Ax ,  y ) =  lim ( A P . x , y ) =  lim ~ 2d(E(2)x,y)= ~ 2d(E(2)x,y) 
n ~ o o  n ~ ° °  [ - - n , n ]  ~. 

we complete our proof of the spectral theorem. [] 

Remarks. First, it should be noted that the proof of Theorem I simplifies 
considerably, irA is semibounded, For this it suffices to consider A > 0. Then we can 
define the spectral family (E(2))a~ of A immediately by 

E(2) :={  pr°jv"'a' if if 4<04>0 

as in the proof of Theorem I [formula (20)-(24)] one states (somewhat simpler) 

(A.x ,  y)  = 1 2(dE(2)x, y)  
(x, yeF(A, n)) . 

It A.x l] 2 = ~ 22d(E(2)x, x )  

Applying Lemma 5, the spectral theorem is proved. Second, the preceding remarks 
show that, leaving out of consideration Lemma 4, the case "A semibounded" is as 
simple (or difficult if you want) as the case "A bounded". 

An analysis of the proof of Theorem I shows, that each closed symmetric 
operator admits (in a suitable sense) a "spectral representation". 

Theorem II. Suppose A is a closed symmetric operator in H. Then there exists one 
and only one increasing rigth-continuous family (E(2))a~ ~ of projections with 
E ( -  oo)=0 such that 

i) 0 F(A,n)=R(E(oo)) reduces A. 
n = l  

it) AJD(A)c~R(E(oo)) is the maximal self-adjoint part of A. 

iii) A]D(A)c~R(E(oo))= J 2dE(2). 
R 
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Proof We only sketch the proof. Use the same notations as in the proof of 

Theorem I, then (E(2))~,~ exists. Pick xeD(A), then E(oo)x=s-lim P,x, IIAP, xH 

< IIAxtl. Thus a subsequence of (AP,x) converges weakly, so E(oo)xED(A) and 

AE(oo)x~ 0 F(A,n)=R(E(oo)). 
n = l  

Due to [4] p. 278 R(E(oo)) reduces A. 
The proof of Theorem I (existence) shows exactly 

A[D(A)caR(E(ov)) = ~ 2dE(2) [in R(E(o0))] , 
IR 

so AID(A)c~R(E(oo)) is a self-adjoint part of A. Suppose A' is a self-adjoint part of 
A being self-adjoint in the subspace H'C H, then due to Lemma 4 

H'= 0 F(A',n)C 0 F(A,n)=R(E(oo)), 
n = l  n = l  

so A '=  A[D(A)c~H'C AID(A)nR(E(oo)). Because of iii)the uniqueness of (E(2))x~ ~ is 
clear. [] 

Concluding Remarks. We wish to notice that the spaces F(A, 2) considered here 
have further applications. 

1) Consider for instance self-adjoint operators A, in the Itilbert space H.  
(1 <n<N) and a real polynomial P in IR N. 

N 

Then the operator P(A 1 ..... A~) makes sense on @D(A,)  and a short 
n = l  

calculation shows 

N 

@ F(A,, 2) C F(P(A 1 .... , AN), P(2 ..... 2)), (29) 
n = l  

where 2>0,  P(A 1 . . . . .  AN) denotes the closure of P(A 1 ..... AN) and/5  is the same 
polynomial as P except that each coefficient has been replaced by its absolute 
value. It follows from (29) and Lemma 4 that P(Ap..., AN) is essentially self-adjoint 

N 

on @ D(A,) (compare [10], pp. 247-248), 
n = l  

2) Suppose (E(2))x~ e is the spectral family of a normal (not necessarily 
bounded) operator A. Then the uniqueness proof of Theorem I shows that 

R(E({p E ~11/~- 2[ < e }) = F(A - 2, e) 

for each 2~ ¢ and each e > 0. Due to Lemma 1 (remark) every bounded operator B 
satisfying BACAB maps F ( A - 2 , 0  into itself. Using suitable approximations 
(compare e.g. [2], p. 68) we get 

E(2).B=B.E(2) 0.~¢').  

This is, for bounded operators A, a famous result of Fuglede (see [9], Theorem 
1.16). 
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