Riemann-Lebesgue Lemma

December 20, 2006

The Riemann-Lebesgue lemma is quite general, but since we only know Riemann integration, I'll state it in that form.

Theorem 1. Let f be Riemann integrable on $[a, b]$. Then

$$
\begin{align*}
& \lim _{\lambda \rightarrow \pm \infty} \int_{a}^{b} f(t) \cos (\lambda t) d t=0 \tag{1}\\
& \lim _{\lambda \rightarrow \pm \infty} \int_{a}^{b} f(t) \sin (\lambda t) d t=0 \tag{2}\\
& \lim _{\lambda \rightarrow \pm \infty} \int_{a}^{b} f(t) e^{i \lambda t} d t=0 \tag{3}
\end{align*}
$$

Proof. I will prove only the first statement. Since f is integrable, given $\epsilon>0$, there is a partition $\left\{a=x_{0}, x_{1}, \ldots, x_{n}=b\right\}$, so that $\epsilon / 2>\int_{a}^{b} f-\sum_{1}^{n} m_{i} \Delta x_{i} \geq 0$, where m_{i} is the minimum of f on $\left[x_{i-1}, x_{i}\right]$. But the sum can be written as $\sum_{1}^{n} m_{i} \Delta x_{i}=\int_{a}^{b} g$, where $g=\sum m_{i} \chi_{\left[x_{i-1}, x_{i}\right]}$, and the inequality takes the form

$$
\epsilon / 2>\int_{a}^{b}(f-g) \geq 0
$$

Now we use the fact that $f-g \geq 0$ to get

$$
\begin{align*}
\left|\int_{a}^{b} f(t) \cos (\lambda t) d t\right| & \leq\left|\int_{a}^{b}(f(t)-g(t)) \cos (\lambda t) d t\right|+\left|\int_{a}^{b} g(t) \cos (\lambda t) d t\right| \tag{4}\\
& \leq \int_{a}^{b}(f-g)+\left|(1 / \lambda) \sum m_{i}\left(\sin \left(\lambda x_{i}\right)-\sin \left(\lambda x_{i-1}\right)\right)\right| . \tag{5}
\end{align*}
$$

The function g has been fixed. Take λ large enough that

$$
\left|(1 / \lambda) \sum m_{i}\left(\sin \left(\lambda x_{i}\right)-\sin \left(\lambda x_{i-1}\right)\right)\right|<\epsilon / 2,
$$

and we are done.

This proof works nearly verbatim for Lebesgue integration and non-compact intervals.

