Here is a list of facts (without proof) about Fourier analysis.

1. Suppose \(f \) is integrable (Riemann or Lebesgue) on \([-\pi, \pi]\) and \(\hat{f}(n) = 0 \) for all \(n \). Then \(f = 0 \) almost everywhere (almost everywhere means except on a set of measure 0). If \(f \) is continuous then \(f \) is identically 0. Briefly
\[
\hat{f}(n) = 0 \text{ for all } n \implies f = 0 \text{ a.e.}
\]

2. Let \(S_N(x) = \sum_{-N}^{N} \hat{f}(n)e^{inx} \), where \(f \in L^2([-\pi, \pi]) \). Then \(\|f - S_N\|_2 \to 0 \) as \(n \to \infty \).

3. If \(f, g \in L^2([-\pi, \pi]) \) then
\[
<f, g> = 2\pi \sum_{-\infty}^{\infty} \hat{f}(n)\bar{g}(n).
\]
Hence
\[
\|f\|^2 = 2\pi \sum_{-\infty}^{\infty} |\hat{f}(n)|^2
\]

4. If \(\sum_{-\infty}^{\infty} |c_n|^2 < \infty \) then there is \(f \in L^2([-\pi, \pi]) \) so that \(\hat{f}(n) = c_n \) (and \(\|f - S_N\|_2 \to 0 \) as \(n \to \infty \)).
(Riesz-Fischer theorem)

5. Let \(R^1 \) be the set of Riemann integrable functions on \([-\pi, \pi]\) and \(R^2 = \{ f : |f|^2 \in R^1 \} \). We have proved \(R^1 \subset R^2 \). Let \(L^1, L^2 \) be defined similarly for Lebesgue integration. It’s a theorem that \(L^2 \subset L^1 \). If \(f \in R^1 \) or \(f \in L^1 \) then \(\hat{f}(n) \) is defined and the following is true (Riemann-Lebesgue lemma)
\[
f \in R^1 \text{ or } f \in L^1 \implies \hat{f}(n) \to 0 \text{ as } n \to \infty
\]

6. Let \(C^{k+} = \{ f \in C^k : f^{(k)} \text{ is piecewise smooth} \} \). (This means that \(f^{(k+1)} \) exists and is continuous except at finitely many points and at those points \(f^{(k+1)} \) has left and right limits.) Note that \(C^{k+1} \subset C^{k+} \).
\[
f \in C^{k+} \implies \hat{f}^{(k+1)}(n) = (in)^{k+1} \hat{f}(n)
\]
Nothing is said here about convergence. Also
\[
f \in C^{k+1} \implies \hat{f}^{(k+1)}(n) = (in)^{k+1} \hat{f}(n)
\]

7. If \(f \in L^1 \) or \(f \in R^1 \) and \(n^{k+1+\epsilon} \hat{f}(n) \to 0 \), where \(\epsilon > 0 \), then \(f \in C^k \). Briefly,
\[
n^{k+1+\epsilon} \hat{f}(n) \to 0 \implies f \in C^k
\]