Fourier Coefficients of a Riemann-Integrable Function

February 23, 2008

This note contains some details on Fourier coefficients of a 2π -periodic Riemann-integrable function. The change of variables formula was only stated, not proved in the text. Here is a very simple version that is adequate for our purposes.

Theorem 1. Let f be Riemann integrable on I = [a, b]. Define g on J = [a + c, b + c] by g(y) = f(y - c) for $y \in J$. Then g is Riemann integrable and $\int_{I} f = \int_{J} g$. We sometimes write this as

$$\int_{a+c}^{b+c} f(y-c)dy = \int_{a}^{b} f(x)dx$$

Proof. Let $\mathcal{P}_1 = \{x_1, x_2, \dots, x_n\}$ be a partition of I. Then $\mathcal{P}_2 = \{x_1 + c, x_2 + c, \dots, x_n + c\}$ is a partition of J and $S_{\mathcal{P}_1}(f) = S_{\mathcal{P}_2}(g), s_{\mathcal{P}_1}(f) = s_{\mathcal{P}_2}(g)$. Hence it follows that $g \in \mathcal{R}(J)$.

Theorem 2. Let f be piecewise smooth on \mathbf{R} and periodic with period P. Then

$$\int_0^P f = \int_c^{c+P} f$$

Proof. Let $g(y) = \int_{y}^{y+P} f$. Then g is continuous and at points, y, of continuity of f, g'(y) = f(y+P) - f(y) = 0. Hence g is constant on each subinterval where f is continuous. This constant has to be the same on every subinterval, since g is continuous everywhere. What is the constant? It is $\int_{a}^{P} f$.

Now we apply these results to the integral that appears in the proof of Dirichlet's theorem.

Corollary 1.

$$\int_{-\pi}^{\pi} f(x) D_N(x - x_0) dx = \int_{-\pi - x_0}^{\pi - x_0} f(y + x_0) D_N(y) dy = \int_{-\pi}^{\pi} f(y + x_0) D_N(y) dy$$
$$= \int_{-\pi}^{0} f(y + x_0) D_N(y) dy + \int_{0}^{\pi} f(y + x_0) D_N(y) dy$$