Fourier Coefficients of a Riemann-Integrable Function

February 23, 2008

This note contains some details on Fourier coefficients of a 2\pi-periodic Riemann-integrable function. The change of variables formula was only stated, not proved in the text. Here is a very simple version that is adequate for our purposes.

Theorem 1. Let \(f \) be Riemann integrable on \(I = [a, b] \). Define \(g \) on \(J = [a+c, b+c] \) by \(g(y) = f(y - c) \) for \(y \in J \). Then \(g \) is Riemann integrable and \(\int_I f = \int_J g \). We sometimes write this as
\[
\int_{a+c}^{b+c} f(y - c) dy = \int_a^b f(x) dx
\]

Proof. Let \(P_1 = \{x_1, x_2, \ldots, x_n\} \) be a partition of \(I \). Then \(P_2 = \{x_1 + c, x_2 + c, \ldots, x_n + c\} \) is a partition of \(J \) and \(S_{P_1}(f) = S_{P_2}(g) \). Hence it follows that \(g \in R(J) \).

Theorem 2. Let \(f \) be piecewise smooth on \(\mathbb{R} \) and periodic with period \(P \). Then
\[
\int_0^P f = \int_c^{c+P} f
\]

Proof. Let \(g(y) = \int_y^{y+P} f \). Then \(g \) is continuous and at points, \(y \), of continuity of \(f \), \(g'(y) = f(y + P) - f(y) = 0 \). Hence \(g \) is constant on each subinterval where \(f \) is continuous. This constant has to be the same on every subinterval, since \(g \) is continuous everywhere. What is the constant? It is \(\int_0^P f \).

Now we apply these results to the integral that appears in the proof of Dirichlet’s theorem.

Corollary 1.
\[
\int_{-\pi}^{\pi} f(x) D_N(x - x_0) dx = \int_{-\pi}^{\pi} f(y + x_0) D_N(y) dy = \int_{-\pi}^{\pi} f(y + x_0) D_N(y) dy = \int_{-\pi}^{0} f(y + x_0) D_N(y) dy + \int_{0}^{\pi} f(y + x_0) D_N(y) dy
\]