Euler's Constant

January 30, 2008

This note has some details on Euler's constant, γ. First the basic theorem.
Theorem 1. Let $h_{m}=1+1 / 2+1 / 3+\cdots+1 / m$ be the $m^{\text {th }}$ partial sum of the harmonic series. Let $e_{m}=h_{m}-\log m$. Then $e_{m}>0$ and $e_{m+1}<e_{m}$. Hence $\gamma=\lim _{m \rightarrow \infty} e_{m}$ exists.
Proof. Since $1 / x$ is a strictly decreasing positive function, $1+1 / 2+1 / 3+\cdots+1 /(m-1)>\int_{1}^{m} d x / x$. So $e_{m}>0$. Also $e_{m+1}=e_{m}+(1(m+1)-\log [(m+1) / m]$. Again, since $1 / x$ is decreasing, $(1(m+1)-$ $\log [(m+1) / m]=1 /(m+1)-\int_{m}^{m+1} d x / x<0$. This implies $e_{m+1}<e_{m}$, so $\gamma=\lim _{m \rightarrow \infty} e_{m}$ exists.

Next some estimates.
Theorem 2. Let $g_{m}=1+1 / 2+1 / 3+\cdots+1 / m-\log (m+1)$. Then $g_{m+1}>g_{m}$ and $\lim _{m \rightarrow \infty} g_{m}=\gamma$.
Proof. We prove the last statement first. $e_{m}=g_{m}-\log [m /(m+1)]$. Since $\log [m /(m+1)] \rightarrow 0$ the last statement is proved. Now as in the argument of Theorem $1, g_{m+1}=g_{m}+1 /(m+1)-\log [(m+2) /(m+1)]$, so $g_{m+1}>g_{m}$.

Corollary 1.

$$
g_{5}=0.491573864105278<\gamma<0.673895420899233=e_{5}
$$

Remark It takes a lot of computing to get much accuracy this way. There are better ways.

