Euler's Constant

January 30, 2008

This note has some details on Euler's constant, γ . First the basic theorem.

Theorem 1. Let $h_m = 1 + 1/2 + 1/3 + \cdots + 1/m$ be the m^{th} partial sum of the harmonic series. Let $e_m = h_m - \log m$. Then $e_m > 0$ and $e_{m+1} < e_m$. Hence $\gamma = \lim_{m \to \infty} e_m$ exists.

Proof. Since 1/x is a strictly decreasing positive function, $1 + 1/2 + 1/3 + \dots + 1/(m-1) > \int_{1}^{m} dx/x$. So $e_m > 0$. Also $e_{m+1} = e_m + (1(m+1) - \log [(m+1)/m])$. Again, since 1/x is decreasing, $(1(m+1) - \log [(m+1)/m] = 1/(m+1) - \int_{m}^{m+1} dx/x < 0$. This implies $e_{m+1} < e_m$, so $\gamma = \lim_{m \to \infty} e_m$ exists. \Box

Next some estimates.

Theorem 2. Let $g_m = 1 + 1/2 + 1/3 + \dots + 1/m - \log(m+1)$. Then $g_{m+1} > g_m$ and $\lim_{m \to \infty} g_m = \gamma$.

Proof. We prove the last statement first. $e_m = g_m - \log [m/(m+1)]$. Since $\log [m/(m+1)] \to 0$ the last statement is proved. Now as in the argument of Theorem 1, $g_{m+1} = g_m + 1/(m+1) - \log [(m+2)/(m+1)]$, so $g_{m+1} > g_m$.

Corollary 1.

 $g_5 = 0.491573864105278 < \gamma < 0.673895420899233 = e_5$

Remark It takes a lot of computing to get much accuracy this way. There are better ways.