Potential of a Charged Sphere

January 19, 2007

This note deals with the value of the potential of a uniformly charged sphere of radius a at a point on the sphere. We take the definition of the potential $u(\mathbf{x})$ at \mathbf{x} to be

$$
\begin{equation*}
u(\mathbf{x})=\sigma \int_{|\mathbf{y}|=a} \frac{d \mathbf{y}}{|\mathbf{y}-\mathbf{x}|} . \tag{1}
\end{equation*}
$$

This is not an improper integral if $r \neq a$, where $r=|\mathbf{x}|$. The value was computed as homework problem number 1 in section 5.6. The value depends only on r and is

$$
\begin{cases}4 \pi \sigma a, & a<r, \tag{2}\\ \frac{4 \pi a^{2}}{r}, & a>r .\end{cases}
$$

Notice that this function has a limit as $r \rightarrow a$ and the answer depends only r. However that doesn't mean that the improper integral converges at a point $\mathbf{x}_{\mathbf{0}}$ on the sphere and even if it does, it doesn't imply that

$$
\begin{equation*}
\lim _{\mathbf{x} \rightarrow \mathbf{x}_{0}} \int_{|\mathbf{y}|=a} \frac{d \mathbf{y}}{|\mathbf{y}-\mathbf{x}|}=\int_{|\mathbf{y}|=a} \frac{d \mathbf{y}}{\left|\mathbf{y}-\mathbf{x}_{\mathbf{0}}\right|} . \tag{3}
\end{equation*}
$$

We will compute the improper integral and see that (3) is true. Assume that $\mathbf{x}_{\mathbf{0}}=(0,0, a)$. Then the improper integral in spherical coordinates is

$$
\begin{align*}
& \lim _{\epsilon \rightarrow 0}\left(\sigma a^{2} \int_{0}^{2 \pi} \int_{\epsilon}^{\pi} \frac{\sin \phi d \phi}{\sqrt{2 a^{2}-2 a^{2} \cos \phi}}\right) \tag{4}\\
& \lim _{\epsilon \rightarrow 0}\left(\sigma \sqrt{2} a \int_{\epsilon}^{\pi} \frac{\sin \phi d \phi}{\sqrt{1-\cos \phi}}\right) \tag{5}
\end{align*}
$$

Make the substitution $u=1-\cos \phi$, compute the integral, and take to limit to get

$$
\begin{equation*}
\sigma 4 \pi a \tag{6}
\end{equation*}
$$

