
TOPOLOGY

1. Introduction

By now, we’ve seen many uses of property of continuity. It is a fairly general
property, encompassing the majority of functions used in calculus, yet it is sufficient
condition for the use of the intermediate and extreme value theorems. Moreover, it
is a necessary condition for differentiability. In light of the central role continuity
plays in calculus, we seeks to study continuous functions further.

There are various alternative characterizations of continuity.

Proposition 1.1. Let f : A → B, A ∈ Rn, B ∈ Rn. Then the following are
equivalent:

• f is continuous
• f takes convergent sequences to convergent sequences
• For all open U ∈ B, f−1(U ) is open in A
• For all closed V ∈ B, f−1(V ) is closed in A

Exercise 1.2. Prove Proposition 1.1.

The third statement on the list is the motivation for the definition of a topology,
and the more general definition of continuity.

Definition 1.3. Let X be a set. Let T be a collection of subsets of X such that
• ∅ ∈ T , and X ∈ T
• If U1, ..., Un are elements of T , then ∩n

i=1Ui is an element of T .
• If Uα ∈ T for all α ∈ A, then ∪a∈A is an element of T .

Then T is called a topology on X, and the pair (X, T ) is said to be a topological space.
The elements U of T are reffered to as the open sets in X. The complement of an
open set is called a closed set.

In light of Proposition 1.1, we make the follwing definitions.

Definition 1.4. Suppose that (X, T ) and (Y, S) are two topological spaces. A
map f : X → Y is said to be continuous if for all open sets V ∈ Y , f−1(V ) is an
open set in X. If in addition f is bijective (that is, one to one and onto) and f−1

is continuous, f is called a homeomorphism and (X, T ) and (Y, S) are said to be
homeomorphic as topological spaces.

One way to think of homeomorphisms is as functions that “mold” spaces, without
puncturing or closing up holes. Intuitively, this would lead us to expect that, say,
an annulus is not homeomorphic to a disk (this is indeed true, but takes a fair
amount of work to prove).

2. Examples

Rn is a topological space, where a set U is said to be open in the topological
sense if it is open in the usual sense. This is called the metric topology on Rn. This
terminology comes from the fact that this space has the topology induced by the
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Euclidean metric–that is, a set U is open if for each point p ∈ U , there is some ε > 0
such that the ball of radius ε centered at p is entirely contained in U (our definition
of a ball uses the Euclidean metric d(x, y) =

√
x2 + y2, but we could have defined

a ball in terms of another metric). Similarly, one can define the metric topology on
Q or C.

Given any set X, we can define the discrete topology by declaring every subset
of X to be open.

On any given set X, we can also define ∅ and X to be the only open subsets of
X. This is known as the trivial topology on X.

Another topology that can be defined on any set X (finite or infinite) is the
cofinite topology. In the cofininte topology, open sets are defined to be those subsets
U ⊂ X such that the complement of U in X is finite (alternatively, the closed sets
are the finite sets). Note that if X is finite, the discrete and cofinite topologies on
X are equivalent.

Exercise 2.1. Show that the topologies discussed above satisfy the definition.

3. Definitions

Many of the set properties discussed in Chapter 1 of Folland’s text can also be
defined in the more general setting of topological spaces.

Definition 3.1. Let {xk}∞k=1 be a sequence in a topological space (X, T ). Then
the sequence is said to converge to a point p ∈ X if for every open set U ⊂ X with
p ∈ U , there exists some KU ∈ N such that k > KU implies xk ∈ U .

Exercise 3.2. Show that in Rn with the metric topology, the above definition is
equivalent to the one given in the text.

Definition 3.3. A topological space (X, T ) is said to be disconnected if it is X is
the union of two disjoint open sets. X is connected if it is not disconnected.

Definition 3.4. Let (X, T ) be a topological space. Then the interior of a set
A ⊂ X is the union of all open sets contained in A, and the closure of A is the
intersection of all closed sets containing A.

For a discussion of compactness, see page 32 in your text.
Remarkably, the Extreme and Intermediate Value Theorems still hold when the

domain is a topological space, and when the definition of compactness and connect-
edness are replaced with those given above.

4. The Subspace Topology

Given a topological space (X, T ) and a subset A ⊂ X, we would like to place
a topology on A that is “nice” with respect to the topology on X. One property
of continuity that holds for maps between real spaces is this: If A ⊂ Rn, then a
function f : Rm → A is continuous if and only if the composite map iA ◦ f is
continuous (here iA denotes the inclusion map from A into X). If we consider
arbitrary topological spaces, it turns out that this property uniquely determines a
topology on A.

Definition 4.1. Let (X, T ) be a topological space, and let A be a subset of X.
Define a topology TA on A by declaring a set V ⊂ A to be open if and only if
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V = U ∩ A for some open set U ⊂ X. Then TA is called the subspace topology on
A.

Exercise 4.2. Show that the subspace topology is indeed a topology.

Using the subspace topology, we can make precise the meaning of “boundary”,
as used in Stokes’ Theorem. If we consider the surface S given in Stokes’ Theorem
to have the subspace topology inherited from R3, the “boundary” of S is the set
of all x ∈ S such that there exists a homeomorphism f from an open set U ⊂ S
containing x to an open subset of H2 such that the image of x under f lies on the
x axis (H2 denotes the upper half plane {(x, y) ∈ R2 : y ≥ 0}). Intuitively, this
means that the boundary of S consists of the points that are on the “edge” of an
open set in S.

5. Applications

One of the main questions in topology is this: what spaces are homeomorphic
to one another?

Exercise 5.1. Show that any two compact intervals (in the subspace topology)
are homeomorphic, and that any two open intervals are homeomorphic.

However, the unit open interval U is not homeomorphic to the unit closed interval
V . Recall that continuous functions take compact sets to compact sets, so any
continuous map f : V → U cannot be surjective.

Exercise 5.2. Is the half open interval W = (0, 1] homeomorphic to U? To V ?

Exercise 5.3. Is the closed unit interval in R homeomorphic to the closed unit
square in R2?

6. References

Bert Mendelson’s “Introduction to Topology” gives a light introduction to the
subject. The book is fairly short, but explains the basic concepts. James Munkres’
“Topology” is the standard undergraduate text; it is used in Math 441. John Lee’s
“Introduction to Topological Manifolds” gives a discussion more focused on the
theory of manifolds, and is the textbook for Math 544.


