Special Sine Series

March 3, 2006

If we make some assumptions on the coefficients we can say some very interesting things about a trigonometric series. These statements are best made in the context of the Lebesgue integral. Here are a few of the differences between the Lebesgue (L) and Riemann integral (R). The usual notation in the Lebesgue case is the following. By $f \in L^{p}(I)$ we mean that f^{p} is Lebesgue integrable on I, which might be an infinite interval. By definition this is equivalent to $|f|^{p} \in L^{1}(L)$. This is similar to saying that the only kind of convergence we will discuss is absolute convergence. Here are a few facts. Let $I=[a, b]$ be a compact interval.

1. Let $p \geq 1 . f \in L^{p}(I) \Longrightarrow f \in L^{1}(I),\left(L^{p} \subset L^{1}\right)$. But $L^{1} \not \subset L^{p}$, if $p>1$.
2. $f \in L^{2}(I) \Longleftrightarrow \sum|\widehat{f}(n)|^{2}<\infty$. This is the Riesz-Fischer Theorem.

Riemann integration is quite different. For example, we know that $f \in R(I) \Longrightarrow f^{2} \in R(I)$. This is the opposite of the Lebesgue case. Also, such functions as $x^{-1 / 2}$ are not Riemann-integrable since they are not bounded, but they are Lebesgue integrable. In the following theorem, a Fourier series is a Lebesgue-Fourier series, not a Riemann-Fourier series.

Here is a list of results (taken from [1] and [2]). Let $b_{1} \geq b_{2} \geq \cdots \geq 0, \lim _{n \rightarrow \infty} b_{n}=0$.
Theorem 1. Let

$$
\begin{equation*}
f(x)=\sum_{1}^{\infty} b_{n} \sin n x \tag{1}
\end{equation*}
$$

1. The following are equivalent
(a) $n b_{n}<K$ is independent of n;
(b) $\left|\sum_{1}^{N} b_{n} \sin n x\right|<M$, independent of N;
(c) (1) is the Fourier series of a bounded function;
(d) f is bounded.
2. The following are equivalent
(a) $\lim _{n \rightarrow \infty} n b_{n}=0$;
(b) (1) converges uniformly;
(c) (1) is the Fourier series of a continuous function;
(d) f is continuous.
3. The following are equivalent
(a) $\sum_{1}^{\infty} \frac{b_{n}}{n}<\infty$;
(b) (1) converges in $L^{1}([-\pi, \pi])$;
(c) (1) is the Fourier series of a function in $L^{1}([-\pi, \pi])$;
(d) $f \in L^{1}([-\pi, \pi])$.

References

1. Frank Jones, Lebesgue Integration on Euclidean Space, Jones and Bartlett, 1993.
2. A. Zygmund, Trigonometric Series, Cambridge Mathematical Library, Cambridge University Press, 2002.
