Thomae's Function

October 6, 2010

This note is a solution to problem 7 from §1.3. The function known as Thomae's function.
Theorem 1. Let f be defined by

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{q} \text { if } x=\frac{p}{q} \text { and } \operatorname{gcd}(p, q)=1 \text { and } q>0 \\
0 \text { if } x \text { is irrational. }
\end{array}\right.
$$

Then f is discontinuous at the rationals and continuous at the irrationals.
Proof. Let r be irrational. Then $f(r)=0$. Let m be a positive integer. Then r is in a unique interval of the form $\left(\frac{k}{m}, \frac{k+1}{m}\right)$. Let $d_{m}=\min \left\{\left|r-\frac{k}{m}\right|,\left|r-\frac{k+1}{m}\right|\right\}$ and let $\delta_{m}=\min \left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$. Notice $\delta_{m}<\frac{1}{m}$. Let $\epsilon>0$ be given. Choose m so that $\frac{1}{m}<\epsilon$. Let $\delta=\delta_{m}$. If x is a rational number with $|x-r|<\delta$ then $x=\frac{p}{q}$ with $g c d(p, q)=1$ and $q>m$. Hence $0<f(x)=\frac{1}{q}<\frac{1}{m}<\epsilon$. If x is irrational, $f(x)=0$. So for any x, with $|x-r|<\delta,|f(x)-f(r)|<\epsilon$. This proves that f is continuous at any irrational number.

Next let $r=\frac{p}{q}$ be rational. Then $f(r)=\frac{1}{q}$. The number $x_{k}=r+\frac{1}{k \sqrt{2}}$ is irrational, $\left|x_{k}-r\right|=\frac{1}{k \sqrt{2}}$ and $f\left(x_{k}\right)=0$. Let $\epsilon=\frac{1}{2 q}$. Is there a δ so that $|x-r|<\delta$ implies that $|f(x)-f(r)|=\left|f(x)-\frac{1}{q}\right|<\frac{1}{2 q}$? No matter how small δ is there is an irrational number $x_{k}=r+\frac{1}{k \sqrt{2}}\left|r-x_{k}\right|<\delta$, with $f\left(x_{k}\right)=0$ and hence $\left|f_{k}(x)-f(r)\right|=\frac{1}{q}>\frac{1}{2 q}$.

