Norms on \mathbb{R}^n

October 7, 2013

Theorem 1. All norms on \mathbb{R}^n are equivalent (even norms you never heard of). In other words if ||| and ||| are norms then there are positive constants a, b such that

$$a|||v||| \le ||v|| \le b|||v|||, \forall v \in \mathbb{R}.$$

Proof. Let || be any norm. We will prove that there are a > 0, b > 0 so that

$$a \|v\| < \|v\|_2 < b \|v\|$$
.

This will be good enough. First let $v = x_1e_1 + x_2e_2 + \dots + x_ne_n$, where $\{e_1, e_2, \dots, e_n\}$ is a basis for \mathbb{R}^n . By the triangle inequality

$$||v|| \le \sum_{j} |x_{j}| ||e_{j}||.$$

By Cauchy's inequality, for the inner product $\sum_{j} |x_{j}| \|e_{j}\|$,

$$\sum_{j} |x_{j}| \|e_{j}\| \le (\sum_{j} x_{j}^{2})^{1/2} (\sum_{j} \|e_{j}\|^{2})^{1/2},$$

so

$$a \|v\| \le ||v||_2$$
, where $a = 1/((\sum_j \|e_j\|^2)^{1/2})$.

Next consider the function ||v|| on the set $||v||_2 = 1$. The set $K = \{v : ||v||_2 = 1\}$ is compact (closed and bounded. By what we have just proved the function $v \to ||v||$ is continuous on \mathbb{R}^n , meaning that if $||v_j||_2 \to 0$ then $||v_j|| \to 0$. Let m > 0 be the minimum of ||v|| on K. Now let $v \neq 0$ be any vector and let $u = v/||v||_2 \in \mathbb{R}^n$. Then $||u||_2 = 1$ so $||u|| \ge m$. Hence

$$\|v\|\geq m||v||_2, \text{ or } ||v||_2\leq b\,\|v\|\,, \text{ where } b=1/m.$$