Least Squares Again

This document will give another discussion of least squares. We are interested in attempting to solve the linear equation

$$
A x=b,
$$

where A is an $m \times n$ matrix. There may not be a solution, so we try to find x that minimizes $\|A x-b\|_{2}$. We have to prove that there is such an x and characterize it. Let $A=\left[a_{i j}\right]$ and

$$
\begin{aligned}
f(x) & =\sum_{i=1}^{m}\left[\sum_{l=1}^{n} a_{i l} x_{l}-b_{i}\right]^{2} \\
& =\|A x-b\|_{2}^{2} \\
& =x^{T} A^{T} A x-2 x^{T} A^{T} b+\|b\|_{2}^{2} .
\end{aligned}
$$

Let's compute.

$$
f_{x_{j}}=2 \sum_{i=1}^{m}\left[\sum_{l=1}^{n} a_{i l} x_{l}-b_{i}\right] a_{i j}, j=1 \ldots n .
$$

Rewrite this as

$$
D f=2\left(A^{T} A x-A^{T} b\right) .
$$

A critical point x_{0} (if there is a critical point) is a point x_{0} such that

$$
A^{T} A x_{0}=A^{T} b .
$$

Why is there such a point? It's the Fredholm alternative. Some people call it the fundamental theorem of linear algebra. This is one statement of it:

Theorem 1. The linear equation $L x=y$ is solvable exactly when $v^{t} A=0$ implies $v^{t} y=0$.
Proof. In our case, if $v^{T} A^{T} A=0$ then $v^{T} A^{T} A v=\left\|v^{T} A^{T}\right\|_{2}^{2}=0$. So $v^{T} A^{T}=0$ and hence $v^{T} A^{T} b=0$. This implies there will always be a critical point x_{0}. There may be infinitely many critical points. At each one of them f takes the same value, $f\left(x_{0}\right)$, and this value is the global minimum of f. It's instructive to prove by computing the Hessian that f assumes a relative minimum at each critical point. We will prove by a direct calculation that $f\left(x_{0}\right) \leq f(x)$ for all x. First we compute the Hessian.

$$
\begin{aligned}
\left(f_{x_{j}}\right)_{x_{k}} & =2 \frac{\partial}{\partial x_{k}}\left(\sum_{i} \sum_{l} a_{i l} a_{i j} x_{l}\right) \\
& =2\left(\sum_{i} \sum_{l} a_{i l} a_{i j} \delta_{l k}\right) \\
& =2 \sum_{i} a_{i k} a_{i j} \\
& =2\left[A^{T} A\right]_{k j},
\end{aligned}
$$

where $\delta_{k j}=1$ if $k=j$ and 0 otherwise. Now $A^{T} A$ is positive semidefinite and doesn't depend on the critical point (it is constant), so each critical point is a local minimum (maybe not strict). Now we prove that the value at each critical point is the same, and is a global minimum.

$$
\begin{aligned}
f(x) & =f\left(x_{0}+x-x_{0}\right) \\
& =\left\|A\left(x-x_{0}\right)+A x_{0}-b\right\|^{2} \\
& =\left\|A x_{0}-b\right\|^{2}+2\left\langle A x_{0}-b, A\left(x-x_{0}\right)\right\rangle+\left\|A\left(x-x_{0}\right)\right\|^{2} \\
& =\left\|A x_{0}-b\right\|^{2}+\left\|A\left(x-x_{0}\right)\right\|^{2}+\left\langle A^{T}\left(A x_{0}-b\right), x-x_{0}\right\rangle \\
& =\left\|A x_{0}-b\right\|^{2}+\left\|A\left(x-x_{0}\right)\right\|^{2} \\
& \geq\left\|A x_{0}-b\right\|^{2}=f\left(x_{0}\right) .
\end{aligned}
$$

This is true for any x, so if we take another critical point x_{1} we find that $f\left(x_{1}\right) \geq f\left(x_{0}\right)$. The argument is symmetric, so all critical points have the same critical value. This argument also proves that all critical points differ by a vector x such that $A x=0$. If the kernel of A is nontrivial there is an entire affine subspace of critical points.

