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i Preface

In 1934, Hardy, Littlewood, and P61ya completed their pioneering
and unique work Inequalities (Cambridge University Press). Since that
time, brief treatments of the topics of their Chapter II have been published
in other languages, notably Russian, but no short monograph on the
elementary portions of the subject has appeared in English. This is the
more distressing since Inequalities demands so much mathematical sophisti
cation of its readers as to be unsuitable for nearly all our undergraduate
mathematics students. Mathematicians know that mathematical analysis
is largely a systematic study and exploitation of inequalities, but students
are unaccustomed to mathematics involving anything but Inequalities.
I have long felt that if freshmen and sophomores were on friendly terms
with inequalities, especially elementary geometric ones, then they would
find the "epsilon and delta" language which is basic to the calculus less
mysterious. In fact, I believe that the majority of calculus students are
capable of understanding their subject provided they have had previous
training in the significance and use of inequalities.
A revolution is taking place in mathematical curriculums, and all at

once a number of elementary tracts on inequalities are to appear. At the
high-school level, the School Mathematics Study Group Monograph
Project is bringing out two monographs on elementary inequalities, one
dealing primarily with geometric inequalities. If they become widely
read, students will be much better prepared to cope with the concepts of
continuity, derivative, and integral. However, even in our superior college
texts, the role played by inequalities outside of the study of limits is a
minor one. Theorems of real depth are thereby ignored. The major

concept of approximation is perforce neglected. For example, if one has
an exact formula, its use may entail considerable investigation involving

inequalities. When a number —such as sin 2.35, (2 + V3) , or / e-"2 dx—
Jo
_

which appears in some formula is replaced by a rational number, it is often
vital to know the error introduced. Error estimates are expressed in terms
of inequalities. Mathematical analysis itself is devoted to finding judi
cious approximations for integrals, infinite sums, solutions of differential

equations, etc., without which conclusions could not be reached and
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theorems proved. These approximations are expressed in terms of in
equalities.

In writing this pamphlet, I have attempted to achieve three objec
tives: to fill—at least partly—the gaps referred to above, to discuss inequal
ities which are basic tools in the development of modern mathematical
theories, and to give a glimpse of the spirit and lifeblood of mathematical
analysis. The topics treated are sufficiently introduced by the Table of
Contents. The deepest and most difficult—Bernstein's proof of the
Weierstrass Approximation Theorem and the Cauchy, Bunyakovskil,
Holder, and Minkowski Inequalities—I have left to the last. However,
I warn the reader that problems within groups have not always been
ordered in degree of difficulty. Many of them are rather hard. Not
knowing which, he may solve them more easily. I believe that the reader
will not find many places where I have been wordy, and I caution him to
work with pencil and .paper at hand for amplifying arguments and for
supplying omitted details and computations. Moreover, there are never

too many figures in a mathematics book, and although I have furnished
illustrations in key spots, there will be several where the reader can bene
ficially construct his own.
The sustainer of my writing has been my wife, and it is she who typed

the manuscript from my scrawled holograph while children shouted in
her ears and tugged at her skirts. Her reward shall be whatever enjoy
ment the following pages bring.

N.D.K.
Ann Arbor, Michigan
June, 1960
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Fundamentals

1. The Algebra of Inequalities

The inequalities we shall discuss will, for the most part, be statements
about real numbers —positive, negative, and zero. The precise definition
of a real number is subtle and nonelementary. A lucid discussion of it
and related notions is to be found in A Course of Pure Mathematics by
G. H. Hardy (Cambridge Univ. Press, 1938) or Mathematical Analysis by
T. M. Apostol (Addison-Wesley Pub. Co., 1957). A good intuitive idea
of what real numbers are and acquaintance with their basic properties is
sufficient background for what is to follow here. Whenever use is made of a
fundamental, but at the same time subtle, property of the real number

system, attention will be called to the fact, and the property will be spe
cifically described. On several occasions we shall use complex numbers.
A reader who is unfamiliar with the complex numbers and their arithmetic
can either ignore the material involving them; or, if he should be interested,
he can obtain whatever prerequisites he needs by consulting Analytic Func
tion Theory, Vol. 1, by Einar Hille (Ginn & Co., 1959).
By far the most important property of the real number system which

we shall use is that the real numbers are ordered. This fact is recognized
in our everyday association of the real numbers with points on a straight
line. Our experience with measuring sticks dates from childhood, and as
we have grown, we have associated larger and larger classes of numbers

with larger and larger classes of points on a line until we have finally
considered each point on a straight line to be associated with a unique real
number. A line for which this association has been made is often referred
to as the real line. An image of the real line is illustrated in Figure 1.

-| -e O IV? T
H 1 1 h-H 1 »-

FIGURE 1

It can be proved on the basis of the definition of the real number
system that it does indeed possess the natural order which we assign to it.
However, we shall consider the property of order to be self-evident. It is
explicitly described by the following postulates.
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Postulate 1. The real number system contains a subset P the elements
of which are called positive reals and which has the following properties.

Postulate 2. If a is a real number, then precisely one of the following
three alternatives is true: a is in P, —a is in P, a is 0.

Postulate 3. If a and b are in P, then a + b and a • b are in P.

If a is in P, we write a > 0. If a is not in P and a is not zero, we say a is
negative. The importance of the above postulates will become obvious
in the paragraphs below.

Definition 1. a > b (or equivalently, b < a) if and only if a — b > 0; that

is
,

a > b if and only if there is a positive number h such that a = b + h.

The statement "a > b" is
,

of course, read as "a is greater than b." Such

a statement is called an inequality. Geometrically, the assertion a> b

means that the point representing the number a on the image of the real
line illustrated above is to the right of the point representing b

.

Incidentally, it is easy to show by Postulates 2 and 3 that the real
numbers 1

, 2
,

3
, . . . are all in P. For suppose that 1 is not in P. Then

since 1 ^ 0, — 1 is in P by Postulate 2
.

Therefore, by Postulate 3
,

(-1)(-1) is in P. But (-1)(-1) = 1
, which is not in P. This is a

contradiction. Consequently, by Postulate 2, 1 is in P. Postulate 3 now
guarantees that 2, 3, 4, . . . are all in P. [note: This proof is not as good
as it might seem since one really needs to prove that (— 1)(— 1

) = 1.]

EXERCISES

1. Similarly show that if o < 6 < 0, then ab > 0.
2. Similarly show that if a < 0 < b

, then db < 0.

The following fundamental rules of algebra for inequalities are proved
using the postulates of order given above. Here and henceforward, lower
case italic letters a, b, c, . . . will stand for real numbers unless otherwise
stated.

Theorem 1. (Determinativeness). Given two real numbers a and 6
,

exactly one of the following alternatives holds: a > b
, a = b, a <b.

Proof. By Postulate 2, exactly one of the alternatives a — b > 0
,

— (a — b
) > 0, o — 6 = 0 holds. By Definition 1
, if a — b > 0
, then

a > b
; if — (a — b) > 0
, then b > a; and if a — b = 0, then a = b.§
The symbol | will always be used as an abbreviation of the sentence:

This completes the proof. If either one of the alternatives a < b or a = b

holds, then we write a = b— read as "a is less than or equal to b." For
example, 2 = 2 and 1 = 2

.
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Theorem 2. (Transitivity). If a > b and b > c, then a> c.

Proof. By Definition 1 and the hypothesis of the theorem, there
exist positive numbers h and A; such that a = b + h and b = c + k. There
fore, a = c + (h + k). Now, by Postulate 3, h + k is positive; hence,
a > c by Definition 1.

Theorem 3. If o > 6 and c > d, then o + c > 6 + d.

Proof. By hypothesis and Definition 1, there exist positive numbers
h and k such that a = b + h and c = d + k. Therefore, a + c = b + d +
(h + k); and hence by Postulate 3 and Definition 1, a + c > b + d.|

Theorem 4. If a > b and c > 0, then ac > 6c and - > - . If c < 0,
h c c

then ac < be and - < - .
c c

Proof. This is an exercise for the reader.

Corollary. If a > b > 0, then - < - ; if a>0>6, then - > - ; if
, j a b a b

a < b < 0, then r < - .
o a

Proof. Suppose a > b > 0 and - ^ - . Then by Theorem 4 with
a b

c = ab, which is positive by Postulate 3,

ab • - ^ ab • - or b ^ a.
a o

By Postulate 2, this contradicts the hypothesis that a > b.
Next suppose a > 0 > b. Now, o • b < 0. If this were not so, both

ab and a(—b), which is equal to — ab, would be in P. Postulate 2 guaran
tees that this is not the case. Thus, by Theorem 4, if we suppose that

- ^ - , we conclude that
a b

ab • - ^ ab>- or a £| b.
a o

This contradicts the hypothesis; hence, by Postulate 2,

1 1

a b

The proof of the last assertion in the Corollary is similar.|
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Theorem 5. If a > b > 0 and c > d > 0, then ac > bd and - > - .
d c

Proof. As in previous arguments, there exist positive numbers h
and A; such that a = b + h and c = d + k. Therefore,

ac = bd + h(d + k) + k(b + h);

hence by Definition 1 and Postulate 3,

ac > bd.

a b
To prove that - > - , we multiply both members of the inequality

d c

ac > bd by (cd)_1 and use Theorem 4.|

Theorem 6. If a > b > 0 and p and q are positive integers, then

Proof. We shall first prove that ap > bp (for any positive integer p).
The proof will be by induction. By hypothesis, a1 > b1. Suppose that
on > bn, n being any positive integer. If it then follows that an+1 > bn+1,
the Principle of Finite Induction guarantees that ap > bp for all positive
integers p. Now, if a" > bn, Theorem 5 in conjunction with the hypothesis
a > b yields the conclusion that an+1 > bn+1. This completes the first
stage of the proof.

We now show that aplq > bplq. Suppose that this is false, namely by
Theorem 1 that aplq g bplg. Then by what was just proved (with ap/«
taking the role of b, bplq taking the r61e of a, and q taking the r61e of p),
it is clear that

ap g bp.

Since we have already proved that ap > bp, Theorem 1 says that this is a
contradiction. Thus the hypothesis aplq ^ bp1q is untenable; and by
Theorem 1, aplq > 6p/a.|

With these fundamental rules in mind, one can develop many meaning
ful and beautiful inequalities. But before proceeding to this task, let us
consider some simple illustrations of the above theorems.

Example. Show that VlO + V2 > Vl7.
Demonstration. If the above inequality is true, then all of the

following statements must be true:

10 + 2VlO V2 + 2 > 17 (by Theorem 6 with p = 2, q = 1)

2VlO V2 > 5 (by Theorem 3)

4 • 10 • 2 > 25 (by Theorem 6 with p - 2, g - 1).
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But 80 is greater than 5 (we proved that 55 > 0). Therefore,

2VT6 V2 > 5 (by Theorem 5 with p = 1, q = 2)

10 + 2\/l0 V2 + 2 > 17 (by Theorem 3)

VlO + V2 > VT? (by Theorem 6 with p = 1, q = 2).

Note that just because the truth of the desired conclusion implied
that 80 > 25, which is true, we could not then legitimately conclude that
our desired inequality was valid. This is because of the fact that both
true and false statements may be derived from a false statement. For
example, consider the statement: 3 > 4 and 1 > — 1. From this state
ment it follows by Theorem 4 with c = 3 that 9 > 12 and by Theorem 3
that 4 > 3.
An inequality which is slightly more sophisticated is

1 135 2n - 3 2n - 1 1

^^
— • — • — • • • •• _..-—"". . • . ^^

V4n + 1 2 4 6 2n - 2 2n V3n + 1

(n = 2, 3, 4, . . .)
.

We shall establish this inequality by using the Principle of Finite Induc
tion. Clearly,

1 1 1 • 3 1 1

= - < -—- < —— = = (Theorems 4 and 6).
V4 • 2 + 1 3 2«4 V7 V3 • 2 + 1

The desired inequality is therefore true if n = 2
.

Suppose that it is true
for a positive integer n ^ 2

. If it can then be shown that it is true for
n + 1

, that is
,

that

1 1«3 (2n- l)(2n + 1) 1

Vin + 5 2-4 2n(2n + 2) V3n + 4

the desired result will have been obtained. By Theorems 2 and 4, this
will be true if

1 ^

1 2n + 1 1

(a) /. . -
*
»
—
T^ >

V4n+ 1 2n + 2 V4n + 5

and

1 2n + 1 1

V3n+ 1 2n + 2 V3n + 4

If (a) is true, then by Theorem 6 with p = 2 and q = 1
, one finds that

1/2n + IV 1

\2n + 2/ 4rH4n + 1 4n + 5

or, by Theorem 4
, that

(2n + l)2(4n + 5) > (2n + 2)2(4n + 1).
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Performing the indicated multiplications, one finds by Theorem 3 that
the last inequality is equivalent to the result

16n3 + 36n2 + 24n + 5 > 16n3 + 36n2 + 24n + 4

or

1 >0.

This reasoning may now be reversed and (a) thereby established. The
proof of (b) is similar.
Can you improve this result?
For the sake of brevity, we shall not always specifically refer to

Theorems 1-6 in future arguments where they are used. But the reader
should recognize the fact that they are tacitly employed over and over
again.

EXERCISES

1. Which is larger, 3 or 10 — 4V3? Give a proof.
2. Show that V5 < Vi + 0.3.
3. Which is greater, o2 + b2 — ab or ahl Give a proof.

4. If m and n are positive integers, show that V 2 lies between m/n and
(m + 2n)/(m +»).

5. Show that
10« i

1,998 < X) -7= < 1.999.i V n

10« i j j i
(Recall that £ -7= = 1 + —p + -7= + . . . + —7== .)

1 Vn V2 V3 V10«

hint: First establish the inequality

2(Vn + 1 - Vn) < -7= < 2(V/n - Vn - 1), n = 1, 2, 3, . . . .Vn
6. Prove that

10» J
1800 < E -7= < 1800.02.

10* Vn

2. Conditional Inequalities

An inequality involving n real variables is said to be conditional if it
does not hold over all of Euclidian n-space, the entire range of the variables.
For example, if x and y are real variables, the inequalities

x < 3 and x + y > 1
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are conditional inequalities, while

x2 > -1 and x2 + y2> -1

are not conditional inequalities since they hold for all real numbers x and y.
This concept corresponds to the distinction made between conditional
equations and identities in algebra:

x2 - 2x + 1 = 0
is a conditional equation, while

(x
- l)2 = x2 - 2x + 1

is an identity.
Another important concept in the theory of inequalities, just as in

other branches of mathematics, is that of absolute value.

Definition 2. The absolute value |a
;| of a real number x is defined as

follows:

|a
;| = x, if x ^ 0

|a
;| = —x, if x < 0.

Thus, |a
;| is the distance from the point x on the real line to the origin.

Note that

l*2l = M2
and

Vx—2 = |*|;

for example, V(— 3)2 = 3
. For real numbers x and y, \x — y
\ is the dis

tance between x and y.
Let us now consider some specific conditional inequalities and their

geometric interpretations.

(a) |a
; —

7
r| < 3. This inequality is fulfilled by all points x on the

open interval (x — 3
, t + 3) and only by these points (Fig. 2).

i-
x-3 v jr+3

FIGURE 2

(b) |x

—

v
\ < \x + V2|. Any real number fulfilling this inequality

must be such that it is closer to a- than to — V2; that is
,
x must satisfy

the inequality (Fig. 3) t- V2
x >
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Conversely, any real number satisfying the latter inequality satisfies the
former inequality.

-V2— I
O

-V2"

X
mlmm

FIGURE 3

(c) \x + 2| + \x
-
2| < 5.

two inequalities

This inequality is equivalent to the

5 5-
^ < x < -.
2 2

In order to prove this, consider the following three cases. If x ^ 2,
\x + 2| + \x - 2| = (x + 2) + (x - 2). Thus, when x ^ 2, \x + 2| +
jx - 2| < 5 if and only if 2 ^ x g f . If -2 ^ x g 2, jx + 2| +
\x
—
2|
= x + 2 — (x — 2) and hence is always less than 5. Finally, if

x ^ — 2, |x + 2| + |x — 2| = — (x + 2) — (x — 2); and consequently
when x S: -2, |x + 2| + |x - 2| < 5 if and only if -2 ^ x > f (Fig. 4).

-2
5
2

0
-H-

FIGURE 4

The inequality (x + 2) + (x — 2) < 5, however, is satisfied on a
half-line, namely for x < f .

/(«J)<0

f(x,y) = x+y-2

FIGURE 5
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If / is a continuous real-valued function defined on some set D of
the (a;,j/)-plane, the set of points of D where f(x,y) = 0 may describe a
curve C in D. The set C often divides D into a number of subsets, through
out each of which one of the inequalities f(x,y) < 0 and f(x,y) > 0 holds.
In the following examples, D will be the (a;,j/)-plane.
(d) If / is a linear function, that is, if f(x,y) = ax + by + c

(a2 + b
2 j£ 0), then the regions where f(x,y) > 0 and f(x,y) < 0 are half-

planes whose common boundary is the graph of f(x,y) = 0 (Fig. 5).
(e) If f(x,y) = x2 + y

2 — 4
, then the region where f(x,y) < 0 is

the interior of the circle with center at the point (0,0) and radius 2.

(f) Let /\x,y) = y — \x
\. The set of points (x,y) where y — \x
\ > 0

is the v-shaped region shown in Figure 6. It is bounded by the lines with
the equations y = x and y = — x. We see this by observing that if x ^ 0,

y — \x
\ = y — x and if x < 0, y — \x
\ = y + x.

/(*,y)-y-|x|

FIGURE 6

(g) \x
\ + 2\y\ < 3. To determine the region where this inequality

is satisfied, we first find its boundary, the set where |x
| + 2\y\ = 3. It is

convenient to proceed case by case. If x ^ 0 and y ^ 0, then \x
\ + 2\y\ =

x + 2y. Therefore, that part of the line with equation x + 2y = 3 which
lies in the first quadrant is part of the boundary of the region we seek. If
i^0 and 2/^0, then |x

| + 2\y\ = —x + 2y. Thus, the segment of
the line with equation — x + 2y = 3 which lies in the second quadrant

is part of the boundary. Proceeding in this way, we find that the region

is the interior of the parallelogram illustrated in Figure 7.

(h) The set of points (x,y) such that f(x,y) = 0 is not always a

curve. For example, let / be the function 0, or the function x2 + y2 + 1.

(i) Iif(x,y) = (x2 + y
2 - 4) (x2 + 9y2 - 9), then the set of points

where f(x,y) > 0 consists of two separate regions: the region whose points
lie inside both the ellipse with equation x

2 + 9y2 = 9 and the circle with
equation x2 + y
2 = 4, and the region whose points he outside both the

circle and the ellipse.
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FIGURE 7

If z is a complex number, z = x + iy (x and y real), then the abso
lute value \z

\ of z is denned to be Vx2 + y2. Note that

|z|2
= zz = (x + ty)(x - iy).

The numbers x and y are called the reoi part and the imaginary part of z,
respectively; z is the conjugate of z. If z and u> are complex numbers, then

\w

—

z\ (or \z

—
w\) is the distance between w and z in the complex plane.

Consider the triangle with vertices the origin, w, and z. The lengths of
its sides are \w\, \z

\,

and \w

—

z\
. Thus the geometric theorem that the

FIGURE 8
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sum of the lengths of two sides of a triangle is greater than the length of
the third side implies the inequality

\w
-
z\ g \w

\

+ \z
\,

or equally well,

|w + z\ ^ |w
|

+ |*
|.

For this reason the last inequality is called the triangle inequality. When
does equality hold?
We can also establish the triangle inequality apart from geometric

considerations.

Proof. First note that

\w + z\
2 = (w + z) (w + z)

=
|iw|2 + \z\2 + (wz + zw).

Now, wz + zW is real since z© is the conjugate of the complex number wz.
We shall show that

(*) wz + zw ^ 2\w\ ' \z
\.

If this is so, then

|w + z\
2 ^ \w\2 + 2\w\ • \z
\ + \z\2;

and by Theorem 6
,

\w + z\ g |w
|

+ \z
\.

In order to prove (*), observe that

(wz
- zio)2 g 0.

This is true because wz — zw is i times twice the imaginary part of wz.
Therefore, since

(wz + zw)2 = (wz — zW)2 + 4|w|2 • |z|2,

we conclude that
w2 + zW ^ 2\w\ • |z
|.

Equality holds if and only if

wz = zw and wz + zu> ^ 0.

This occurs if and only if vx = uy and ux ^ 0 (w = u + iv). The geo
metric significance should be obvious from Figure 9.

The inequality

|u
>
| —

\z
\ ^ \w

—

z\

is implied by the theorem that the difference between the lengths of two
sides of a triangle is less than the length of the third side.
In the remaining examples, w and z denote complex numbers.
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(j) The inequality \z
\ < 3 holds in the interior of the circle with

center at the origin and radius 3
, and nowhere else.

V

w=u+iv

FIGURE 9

(k) The simultaneous inequalities 1 < \z
\ < 3 hold only in the

interior of the annulus bounded by the circles of radii 1 and 3 and with
centers at the origin (Fig. 10).

FIGURE 10

(1) The inequality \z

— l| + |z + l| < 4 holds in the interior of an
ellipse with foci at the points ±1 and with semi-major axis of length 2
,

and nowhere else.



CONDITIONAL INEQUALITIES 13

(m) A lemniscate is the locus of points the product of whose
distances to two fixed points is a constant. Thus, the inequality

\z
— l| • \z + l| < 1 (or \z

2 — l| < 1
) holds only in the interior of the

lemniscate illustrated in Figure 11.

iy,

V2+i-(y -Nf A^+i-0' L_> J '"
1

FIGURE 11

The inequality \z
z —

4
| < 1 holds if and only if z lies in one of the

two disjoint regions bounded by the lemniscate with equation \z
2 —

4
| = 1

(Fig. 12).
kiy

&-V3+i-0 V3+i

-V5"+

o

FIGURE 12

V5+J-0

EXERCISES AND PROBLEMS

1. For what real numbers x is

(a) 4 - x < 3 - 2x,
(b) 4x2 - 13x + 3 < 0,

(c) x2 + 4x + 4x > 0
,

(d) (x-l)(x-2)(x-3)(x-4) £0,
(e) x(x-l)(x-2)(x-3) < 0,

(f) {\)x < 10?

2. Describe and illustrate the regions in the (x,y)-plane for which
(a) 2x2 + 1y S \5y 4- 8,

(b) x2 - xy + y
2 Z 0,

(c) 4x2 + j/2>1,
... 2x - 1 „
(d)
3^-V<3'
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(e) x2 - 2\y\ > 2,
(f) |x

| + \y
\

< 1,

(g) |x

- y\ + 4 < 1*1,
(h) |x

-

1
| + \y - 1| H 2,

(i) |:
r| • \y
\

< 4,

0) |3x| + \2y\ < 5
,

(k) \x + j/|2 - |x - y|2 > 1,

0) [1 + O
r + y)]1/2 >* + !/.

3. Let z be a complex variable. In what regions is

(a) \z
\ -

\z + 1| < 4
,

Cb) |*
| <2|*-1|,

(c) |?8+9|<1?

4. Let v, w, and « be any three complex numbers. Show that

|»
| + |t
> + w
\ + \w + z\ + |2 + z\ £ 2.

5. Give a nongeometric proof of the inequality

|u
>
|

—

\z
\ < \w + z\
.

When does equality hold?
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Two Ancient Theorems

3. Geometric and Arithmetic Means

One of the early triumphs of the calculus was the solution of a large
class of problems involving maxima and minima by means of a single
receipt. Before the "invention" of the calculus by Newton and Leibnitz,
many problems of this kind had been solved, and their solution made
others all the more tantalizing. For example, solutions of simple isoperi-
metric problems were known (iso means same): Of all triangles with the
same perimeter, which has the greatest area; of all isoperimetric rectangles,
which has the greatest area? At the same time, problems such as finding
that curve joining two points down which a ball would roll the fastest (the
curve of quickest descent), or determining which box among all those that
can be inscribed in a given ellipsoid has the greatest volume, could not be
solved with existing methods. On the other hand, some extremal problems
whose solution by means of calculus is either cumbersome or impossible
to carry out can be solved with the aid of more elementary methods.
A discussion of some of these elementary methods is useful for two reasons:
it provides motivation for and better understanding of the calculus; and
it demonstrates that if the receipts of calculus fail, all is not necessarily
lost. This section is devoted to an examination of one elementary tool
for the solution of extremal problems: the Theorem of Arithmetic and Geo
metric Means. We shall see what the theorem means, whence it comes,
and how it is used.
Let ABC (Fig. 13) be a right triangle with hypotenuse AB and alti

tude CD = x. Then, since the triangles ACD and BCD are similar,

a
—
x

x b

The number x is called the geometric mean of a and b. Note that if a < b,
then a < x <b. Another way of defining x is to say that it is the length
of a side of a square whose area is equal to that of a rectangle with sides of
lengths a and b. This definition comes from ancient Greece and can be
found in Euclid's Elements.

15
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c

FIGURE 13

Definition 3. The geometric mean Gn of n positive numbers xi,
is the nth root of their product:

i Xn

Gn = (xi • x2 •
/ n \l/n

Thus, Gn is the length of an edge of an n-dimensional cube whose volume
is equal to that of an n-dimensional rectangular parallelepiped whose
orthogonal (mutually perpendicular) edges have lengths Xi, . • . , xn.
The definition of an arithmetic mean is more familiar.

Definition 4. The arithmetic mean An of n numbers Xi, . . . , xn is one
nth of their sum:

n

En
n

Arithmetic and geometric means are used in making estimates or approxi
mations. It is often more convenient to speak of the mean of several
quantities rather than to speak of each of them individually. Information
provided by data (for example, weather data) is more easily grasped in
this way. The question naturally arises, then, what the relation may be,
if any, between the arithmetic and geometric means of the same set of
n positive numbers. A hint as to the answer is provided by the following
observation.

It is geometrically obvious that among all possible right triangles
with hypotenuse AB, the isosceles triangle has the greatest altitude.
For the isosceles triangle (Fig. 13)

(p + 6)
x = •

2

But a + b is fixed. Hence, for any other right triangle on the hypot
enuse AB

V-r a + b
ab = x < ——- •
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Therefore, if a and b are any two positive numbers,

/— a + by/ab g —— - .
2

It is easy to confirm this inequality analytically by means of Theorem 6:
the inequality

(a - b)2 ^ 0
implies that

a2 + 2ab + b2 ^ 4a6,
or

from which it follows by Theorem 6 that

*±± > Vab.
2

Equality holds if and only if a = b.
This inequality has yet another geometric interpretation: among the

class of all rectangles with the same perimeter P, the square has the largest
area. For let the sides of such a rectangle have lengths a and b. Then
P = 2(o + b), and we may rewrite the last inequality in the form

ab *(!)'
Equality holds if and only if o = b = P/i.
The inequality may be interpreted in still a different fashion: of all

rectangles with area A, the square has the least perimeter. For, denoting
the lengths of the sides of any such rectangle by a and b, we see that

£ _ «±» * V3 - aw,4 2
'

or
P ^ 441/2.

Equality holds if and only if a = b. This result was known before the
time of Euclid.
On the basis of these observations it is natural to ask whether it is

always true that Gn ^ An. The answer to this question is contained in
the following celebrated theorem.

Theorem 7. (The Theorem of Arithmetic and Geometric Means). The
geometric mean of n positive real numbers is always less than or equal to
their arithmetic mean; equality holds if and only if the numbers are all equal.

-
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Before we attempt to prove this theorem, let us look at some geometric
interpretations of it and judge their plausibility. Let the lengths of the
orthogonal edges of an n-dimensional box be Xi, . . . , xn, let its volume be
V, and let the sum of the lengths of its edges be P. Theorem 7 implies
that

P
vlln = a <. a .V - (rn S An -

2n_,w
,

or

*r—t-
L2n_1nJ

Equality holds if and only if xi = x% ■» . . . ■» xn. Thus if P is fixed, V is
greatest when xi = . . . = xn. Geometrically, this means that of all
n-dimensional boxes ("rectangular parallelepipeds") with the same sum
P of the lengths of their edges, the "cube" has the greatest volume. More
over, of all n-dimensional boxes with the same volume, the cube has the
least sum of all edges. These two theorems are plausible generalizations
of the previous statements about rectangles. Further, if one considers
various choices of n and specific numbers Xi, one finds that Gn is indeed
never greater than An. (Try it; examples are one kind of experiment in

mathematics.)
It remains to give a proof of Theorem 7. The following elegant one

is due to the nineteenth century French mathematician Augustin Cauchy

(1789-1857).
One Proof of Theorem 7. Cauchy observed that if one could just

show that Gn ^ An whenever n is a power of 2, then one could prove the
theorem for all other n. He also found a simple way to prove the theorem
for n = 2*, k = 1, 2, 3, . . . . Here is his reasoning.
Cauchy used induction to prove the theorem for n a power of 2. If

n = 2, that is
,
k = 1
, it is clear that

(xi + x2\2 (xi - x2\2

so that by Definition 1
,

*ix2 g (—^— j •

Equality holds if and only if (xi — x2)2 = 0
, that is
, if and only if Xi = x2.

If n = 4, that is, k = 2
, one sees by four applications of this result that

<-><-> * (H*)(H*) * \V
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To obtain the last inequality, observe that

hi + X2\ (x% + Xj\
Xi + X2 X3 + Xj

Now we make the hypothesis of induction, namely, that the inequality is
true for n = 2k; and we examine the truth of the inequality for n = 2*+1.
By the result for n = 2

k, we see that

2*+l / 2* \ / 2i+1 \

n *, = (!!*,)( n xA^

2* \ 2* / 2*+» \ 2*

Y.Xi\ I E Xi

But

Therefore,

By the Principle of Finite Induction and Theorem 6
, it now follows that

Theorem 7 is true for n a positive power of 2.

If n is not a power of 2, let 2m be a power of 2 greater than n, and let
2m — n = k. Then by Theorem 7 as applied to the 2m numbers

Xlt ' ' ' > .*"«) -^n> ' ' ' j "tn

fc terms

(ru)4u

£ a;,- + kAn

1 [w^n + fcAn~|2" — 2»

[ 2m J B '

or

Consequently,

Again by Theorem 6
, the inequality is equivalent to

Gn g An.

Of course, equality holds in every instance above if and only if xi — f
c = xn.§
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This proof has two important features: it is short and clear, and it is
brilliant. One wonders how Cauchy ever thought of proving the theorem
in this unexpected way. While one can possibly discover a reasonable
motivation for Cauchy's proof, it is good to realize that brilliance often
needs no explanation. On the other hand, it is excellent training to try to
arrive constructively at a proof of a theorem without a stroke of brilliance,
since most of us must always proceed in this way if we are to proceed at all.
To do this with respect to Theorem 7, we first observe, as we essentially
did above in interpreting the theorem geometrically, that the following
theorem is equivalent to Theorem 7.

Theorem 8. The product of n positive numbers whose sum is fixed is
greatest when they are all equal.

This proposition suggests that if two sets of n positive numbers have
the same sum S, the one whose members are "more nearly" equal to S/n
has the greater product of its elements. The question is to make the
notion of "more nearly" precise. Given a set of n numbers whose sum is
S and not all of whose members are equal, there must be one member
smaller than S/n and one larger. If we increase the size of a smaller one
and correspondingly decrease the size of a larger one, then it is reasonable
to hope that the new set of n numbers has a larger product. This turns
out to be true. However, how shall we ever obtain in this way a set of
n numbers with sum <Swhose product we cannot increase any more? The
key to this problem lies in our conjecture that this unimprovable set must
consist of n equal numbers. We must so change the original numbers
that one by one they are made equal to S/n. Let us now transform this
hazy outline into a solid proof.
Proof of Theorem 8. Given n positive numbers with sum S, we

are to prove their product must be less than or equal to (S/n)n. If the
numbers are all equal to their arithmetic mean S/n, then clearly equality
holds. Otherwise, there must be at least one smaller than An = S/n and
at least one larger. Choose one which is smaller and one which is larger,
and call them ai and a2, respectively. Then

ai = An — h and a2 = An + k

where h and k are positive. Next choose a[ = An and a2 = An + k — h,
and consider the product a[a,2. Clearly,

a[ai = An(An + k - h)
= (An + kAn - hAn),

while

aio2 = (An - h)(An + k)
=
(A2n + kAn - hAn) - hk.
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The product hk is positive, and

aid2 = ai(i2 + ?&&.
Therefore,

aia2 > aia2-

Of course, by deliberate choice a[ + a£ = ai + 02- Thus, the set of n
numbers consisting of a[

,

a
^ and the unchosen n — 2 numbers of the given

set has sum S but a greater product than the product of the numbers of
the original set.
If the numbers in the new set are all equal, then it must be that the

product of those in the given set is less than AZ- Otherwise, there must be
at least one number of the new set smaller than An and at least one larger.
Pick one of each kind, and repeat the previous argument. It is clear that
after at most n — 1 steps of this sort we shall have constructed a set of
n identical numbers with sum S and such that the product of the members
of this set is greater than the product of the original n numbers.!

4. An Application

The next theorem is an application of Theorem 7 which is useful in
the solution of a number of problems. In particular, we shall use it to
answer the familiar question: Which right circular cylinder has the least
surface area among all those with the same volume ? The Binomial Theorem
tells us that when n is a positive integer

(1 + *)n = 1 + nx + f nl xk.

2 k\(n — k)\
If x > 0, then since each coefficient

n!

(f
c = 2, ...,n)

k\(n-k)\

is a positive integer, we see that

(1 + x)n > 1 + nx.

Theorem 9 gives a generalization of this inequality.

Theorem 9. If x ^ — 1 and 0 < a < 1
, then

(1) (l+x)a £1 + ax.
If a < 0 or a > 1 and x ^ — 1, then

(2) (1 + x)a ^ 1 + ax.

Equality holds in these inequalities if and only if x = 0.

Proof. We shall give a proof only for a rational. Suppose that
a = m/n and 0 < a < 1
, where m and n are positive integers. In order
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to be able to apply Theorem 7, we write (1 + x)mln as

-^(1 + *)... (l + x)l.l---l.
v , '» v '

m factors n —m factors

We can then conclude that

m— x.
n

Equality holds if and only if 1 + x = 1, that is
, only if x = 0.

We next examine the case a > 1
. If (1 + ax) is negative, inequality

(2) clearly holds. If 1 + ax ^ 0, then ax ^ — 1
; and by the inequality (1),

(1 + ax)lla ^ 1 + - • ax = 1 + x,
a

since 0 < - < 1
. Thus, by Theorem 6
,

a

(1 + ax) g (1 + x)a.

Equality holds if and only if ax = 0, that is, if and only if x = 0.

The case a < 0 remains. If 1 + ax is also negative, then inequality
(2) is obvious. If 1 + ax ^ 0, we choose a positive integer n such that

0 < — a/n < 1
; and we consider the quantity

[(1 + a;)0]-1/" or, what is the same, (1 + x)-0/*.

Then by (1),

Therefore,

But

(1 + x)-aln
gl--i

n

(1 + x)aln ^—
l-?x
n

al + -x
n

l.-x (i—«,Vi+2,y
n \ n ) \ n /

l + -x

^ 1 + - X.
n
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Thus,

(l + x)a'n^ l + -x, or (l + x)a^(l + -x\ -

Let us now choose n so great that ax/n ^ — 1. Then, by what we have
already proved (the case a > 1 and x ^ — 1 with a = n), we conclude that

(a \n axl + -x) £ 1+w — = 1 + ax.n / n

It is easy to see that equality holds only if a; = 0.|
If we replace x by y — 1, then (1) and (2) take the form

(1') ya - ay ^ 1 - a (i
f y ^ 0 and 0 < a < 1),

(2') y" - ay ^ 1 - a (i
f y ^ 0 and a > 1 or a < 0).

Equality holds in either (l') or (2') only if y = 1
.

The inequality (2') yields the solution of the above mentioned prob
lem: What right circular cylinder of volume V has the least surface area S?
Suppose such a cylinder is given with radius r and height h. Then

V = Tr2h and S = 2*-(r2 + rh).

Substituting the value of h in terms of r and V for /i in the expression for /S
,

we find

S -H"*+£)
The sum in the parentheses resembles y" — ay with y = 1/r and a = —2,
except that the coefficient of 1/r is V/ir and not 2

. We need only to deter
mine the ratio of r to h, since all right circular cylinders with a given ratio
of r to h are similar. Hence, we lose no generality if we suppose that

V = 2jt. In this circumstance,

5 = 2ttM-
By (2'), the minimum value of S occurs when

Thus, for S a minimum we must have

V = 2ir = vh, or ft = 2.

We have therefore proved that the right circular cylinder with volume V

which has the least surface area has a diameter equal to its altitude.

Theorem 9 may also be used to solve the following problems.
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PROBLEMS
J

1. What is the box (without a top) of largest volume which can be constructed from a
square piece of tin of edge length 2a by cutting a square from each corner and
folding up the edges? (See Fig. 14.)

r —
i

i i

Il
i i

i

i

i

i

i

i

i

i

2a

FIGURE 14

2. Find the minimum values of xs — 27x and x-113 + 27x for x > 0.

3. Prove that if a > 0, then

a + 1 T

4. Prove that for -1 < a < 0,

<Y,k"< (n + l)^1
« + l

noH-1t±2= <£•■«-fcrva+1 i a+1

5. Find an upper bound for S — (p = 2, 3, . . .).

FURTHER PROBLEMS

6. Write down a proof that Theorem 8 implies Theorem 7. hint: Given n positive
numbers xi, . . . xn, in order to show that

n

/n \l/n 4p-X»

-
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first consider the set of n numbers y,- (i = 1, . . . , n) where

Xi
Vi = T— .

i
Then apply Theorem 8.

7. Prove that either one of Theorems 7 and 8 is equivalent to the following one:

Theorem 10. The sum of n positive numbers whose product is 1 is least when they
are all equal.

Remember that to prove this equivalence you must prove two things: that

Theorem 8 (or 7) implies Theorem 10 and conversely that Theorem 10 implies

Theorem 8 (or 7).

8. Prove that of all three dimensional boxes with the same surface area, the cube has
» the greatest volume.

9. If x and y are positive, show that

(xJ/n)i/(n+i)<£±^ (n = l,2,...).
n + 1

unless x = y.

10. Prove that

nl<(rP~)n <»=2>3.4>---)-

11. Give more than one proof of the theorem that if xi, . . . , xn are positive, then

with equality holding if and only if x\ — x» — . . . — xn.

12. Let ABC be a triangle with perimeter P and area T, and let

IB = e, AC = b, and BC = a.
Heron's formula states that

16T2 = P(P - 2a) (P - 26) (P - 2c).
You may more easily recognize it in the form

T = M-oXa-fcKs-c)]1"1,

where s is the semiperimeter P/2.

Theorem 11. Of all triangles having a common base and perimeter, the isosceles
triangle has the greatest area.

Prove this theorem using Heron's formula and one of Theorems 7, 8, and 10.

13. Similarly prove

Theorem 12. Of all triangles with the same base and area, the isosceles triangle
has the least perimeter.
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14. Give analogous proofs of

Theorem 13. Of all triangles with the same perimeter, the equilateral triangle
has the greatest area,

and

Theorem 14. Of all triangles with the same area, the equilateral triangle has the
least perimeter.

15. Prove that Theorems 11 and 12 are equivalent, hint: To prove that Theorem 11
implies Theorem 12 consider three triangles:

(a) any triangle—suppose it has area T and perimeter P;
(b) an isosceles triangle with the same base and area as triangle (a) but with
perimeter Pi;

(c) an isosceles triangle with the same base and perimeter as triangle (a) but with
area T%.

16. Prove that Theorems 13 and 14 are equivalent.

17. Of all triangles circumscribed about a given circle, which has the least area and
which has the shortest perimeter? Prove your conjectures.

18. Let a "blank" be a name for some plane geometric figure, and suppose that all
blanks are similar. Let C be any class of plane geometric figures. For example, a
blank could be an equilateral triangle, and C could be the class of all triangles.
Establish the equivalence of the following two theorems.

(A) Of all figures in C which have perimeter P, the blank has the greatest area.
(B) Of all figures in C which have area T, the blank has the least perimeter.

Mathematicians call theorems like (A) and (B) dual theorems. What you have
just shown is that the theory of isoperimetric theorems in the plane exhibits duality,
that is

,

that isoperimetric theorems come in equivalent pairs.

19. If Q is a quadrilateral with sides of lengths a, b, c, and d, a pair of opposite angles
a and /3

,

and area T (Fig. 15), then one can rather easily and simply show that

2T = ah sin a + cd sin j3

FIGURE 15

-
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and
o2 + b2 — 2ab cos a = c2 + d2 — 2cd cos 0.

Derive the formula

16772 + (a2 + 62 - c2 - d2)2 = 4a262 + 4c2d2 - 8abcd cos (a + (3).
20. Theorem 15. Of all quadrilaterals with the same sides in the same order, the one
which can be inscribed in a circle has the greatest area.

Prove this theorem.

21. Theorem 16. Of all quadrilaterals of perimeter P which may be inscribed in
circles, the square has the greatest area.

Prove this theorem, hint: First show that if the area of such a quadrilateral is T
and the sides are of lengths a, b, c, and d, then

16T2 = (P - 2a) (P - 26) (P - 2c) (P - 2d).

5. The Isoperimetric Theorem

Combining Theorems 15 and 16, one can conclude that

Of all isoperimetric plane quadrilaterals, the square has the greatest area.

However, no one has been able to give an analogous proof of the isoperi
metric theorems for pentagons, hexagons, etc. The Isoperimetric Theorem
is as follows.

Theorem 17. Of all plane figures with perimeter P, the circle has the
greatest area.

We shall not give a proof of Theorem 17, or of Theorem 18 below, in
this study. Theorem 17 is the most general isoperimetric theorem that can
be stated for plane figures. It took mankind about two thousand years
after discovering this theorem to prove it! Where does the difficulty he?
Well, it is easy to prove that if there actually does exist a plane figure of
maximum area among all those with perimeter P, then it must be a circle.
However, the "if," the question of existence of such a figure, is a difficult
one to remove. It was not removed until the work of the German mathe
matician Karl Weierstrass, who was a professor at the University of Berlin
in the last half of the nineteenth century. He was a founder and developer
of the rigor which has become an essential feature of mathematics. Many
mathematicians before him, including Archimedes, knew the Isoperimetric
Theorem, and many thought that they had a proof. Weierstrass was the
first to point out the possibility that a solution to a problem in maxima
or minima may not exist. He not only raised the question, but he also
answered it. He developed the calculus of variations on a rigorous basis,
and he was then able to establish conditions under which one can assert the
existence of solutions to problems involving maxima and minima.
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The most elegant pseudo-proofs of the Isoperimetric Theorem were
created by the brilliant Swiss geometer Jacob Steiner (1796-1863); in
fact, his methods are still used in dealing with geometric problems. One
of his "proofs" of the Isoperimetric Theorem is given below.

Definition 5. A set of points is said to be convex if the straight line
segment joining any two points of the set also lies in the set.

A plane convex body or figure is any bounded plane convex set that is
not a straight line segment. Circles, ellipses, triangles, and parallelograms
are among the most commonly occurring plane convex bodies. The theory
of convex bodies is a surprisingly beautiful and well-developed one. It
contains an amazing number of useful theorems, and it finds application
in almost every branch of pure and applied mathematics.

It is intuitively clear that every convex body has a boundary. The
boundary may be described as follows: a point P is on the boundary of a
convex body B if and only if every circle with center at P contains points
of B and points outside of B. A straight line cuts the boundary of a convex
body in at most two points. It is also intuitively clear that the boundary
of a plane convex body has a finite length and that a plane convex body
itself has a finite area. The boundary of a plane convex body is a simple
closed curve, that is

,

the boundary can be continuously distorted into
the circumference of a circle without two distinct points of it ever coa
lescing. All these statements can be rigorously proved, but we shall not
investigate such delicate matters here.

An Argument of Steiner's. Let C be any plane figure of perim
eter P. Clearly, if C is not convex, we can construct another figure of
perimeter P and with a greater area:

or

FIGURE 16

-
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Further, if C is convex but is not a circle, we can again construct a figure
with the same perimeter but with a larger area. To do this we use the
isoperimetric theorem for quadrilaterals which you have proved above.
If C is not a circle and is convex, then there must exist four points on its
boundary which are not the vertices of a quadrilateral inscribed in a circle.
Consider the parts of C which lie exterior to such a quadrilateral to be
rigid and rigidly attached to its sides, and assume that its vertices are
flexible joints (Fig. 17). If we now distort the quadrilateral into a new
one which can be inscribed in a circle, the total area of the new one plus the
attached pieces of C will be greater than the area of C, while the perime
ter of the new figure will be P. (If there is some overlapping near the

FIGURE 17

joints, pieces may be added so as to compensate for the lost area while at
the same time preserving the perimeter.) Therefore, to any plane figure
which is not a circle, there corresponds another of the same perimeter
but with a greater area.

However, just because we can prove that any noncircular figure can
be "improved," it does not follow that a figure of maximum area with a
given perimeter does indeed exist. A. S. Besicovitch has proved, for
example, that a straight line segment of unit length can be turned com
pletely around inside a plane figure of arbitrarily small area! There is no

figure of least area in which a line segment of unit length may be so moved
as to end up turned around. [A. S. Besicovitch, "On Kakeya's problem
and a similar one," Mathematische Zeitschrift, vol. 27, 1928.]
Let us now return to the subject of the isoperimetric theorem for

n-gons:

Theorem 18. Of all n-gons with perimeter P, the regular n-gon has the
greatest area (n = 3, 4, . . .)

.

There are several reasons for believing in the truth of this theorem. Firstly,
we have already proved it for n = 3 and 4
.

Secondly, the conclusion is an

attractive one— if any n-gon of perimeter P is to have the greatest area
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the regular one must surely be that one. Thirdly, one can prove that
Theorem 17 implies Theorem 18.

PROBLEM

22. Prove that if Theorem 17 is correct, then so is Theorem 18.

It was remarked above that an elementary proof of Theorem 18 has
not yet been found. The term "elementary proof" means here a proof
that does not use the basic ideas used to prove Theorem 17. Moreover,
it should be a constructive proof. (The proofs of Theorem 18 for n = 3
and 4 which we have given are constructive, not indirect.) Let us now
examine some possible steps in a proof of Theorem 18.
Suppose an n-gon Q with perimeter P is given. If Q is not convex,

then we can construct a convex n-gon Q' of perimeter P, and with greater
area than Q, in the following way. If Q is not convex, it is because the
line segments joining one or more pairs of nonconsecutive vertices of Q
lie outside Q. To obtain Q' first replace the boundary of Q by the outer
boundary of the polygon formed by Q and these line segments (Fig. 18).

FIGURE 18

The resultant polygon H has an area greater than that of Q and a smaller
perimeter. The boundary of H is called the convex hull of Q. We then
construct Q': it is the polygon of perimeter P which is similar to H. There
is one possible objection that may be raised to this reasoning: Q' may not
be an n-gon but a fc-gon with k < n. Mathematicians would say, however,
that Q' is an n-gon, albeit a degenerate one. A mathematician would
simply label n — k points lying on the interior of a side of Q' as vertices
of Q' so as to make n vertices in all. (In an attempt to overcome this
objection in another, perhaps more honest, way one is led to Theorem 19

below.)

Definition 6. Let Q be the boundary of a nonconvex n-gon P. Let ab
be a segment of the convex hull H of Q such that if x lies in both Q and ab,
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then x is either a orb. A reflection operation s on P reflects that piece of Q
lying interior to H and having end points a and b in ab as a mirror (Fig. 19).

'*•».

Not a reflection operation Reflection operations

FIGURE 19

The new polygon s(P) is a fc-gon (n — 2 ^ k ^ n) with sides congruent to
corresponding sides of P. Consider a sequence \rm(P) } (m = 0, 1, 2, . . .)

,

where r0(P) = P and rm(P) = rm[rm-i(P)] (m > 0) and where the rm'a
are arbitrarily chosen reflection operations.

Theorem 19. If P is a nonconvex n-gon, any sequence {rm(P)} is finite,
and the last member is a convex A;-gon (k ^ n).

In order to prove this theorem, we need to use a fundamental property
of the real number system which is known as the least upper bound prop
erty, and which we now describe.
Let an infinite sequence of real numbers bi, 62,

denoted {bn}. For example,

f 1
1

_
n

W + l

, K, 0n, "n+1, be

1 1 1 1 1

J 2'3 4 n n + 1

'4 28 65
n3 + 1

9 '16'"" n2

A number M is said to be an upper bound for the sequence { bn } if and only if

MM (k - 1, 2, 3, . . .).

A number L is said to be a lower bound for the sequence b
n if and only if

L^h (k = 1
, 2
,

3
, . . .)
.

The following theorem expresses the least upper bound property of the real

number system.
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Theorem. Every sequence of real numbers having an upper bound has
a least upper bound, and every sequence of real numbers having a lower
bound has a greatest lower bound.

If a; is the least upper bound of {bn}, we write x = l.u.b. bn. For
example,

"

1 = l.u.b. - , and 0 = g.l.b. - .
n n n n

Now suppose that {&„} is a monotone increasing sequence of real
numbers, that is

,
6
i ^ &2 ^ h g . . . g bn ^ bn+1 g . . ..

It is an easy consequence of the l.u.b. property that if {bn} has an upper
bound then lim b

n exists and is equal to l.u.b. bn. This fact will be used
n—*°o n

in the proof of Lemma 1 below.
Proof of Theorem 19. The vertices of the polygons rm(P) which are

all images of the same vertex of P will be called corresponding vertices.
Let us denote a set of corresponding vertices of the polygons rm(P) by

{vm}. Thus, ri(v1) = v2, r2(v2) = v3, . . ..

Lemma 1. As m— * <x>,vm approaches a limit v
; hence, the sequence

{^m(P)} converges pointwise to r(P), a fc-gon (f
c ^ n).

To prove this lemma, we observe that if ai, a2, and a3 are three non-
collinear points interior to the convex hull H of P, then each sequence
[afm] (

j = 1
, 2
,

3
) is a bounded monotone increasing sequence of posi-

vm.

\
\
\
\ /

a \ / b

fx

>aj

FIGURE 20

tive numbers (Fig. 20). Furthermore, ajvm, the distance from a3- to vm, is

always bounded by one-half the perimeter of P. (Two points of a polygon
can never be farther apart than one-half of its perimeter.) Therefore, by
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the least upper bound property of the real numbers, each sequence {a]vm}
has a least upper bound Rj, which is also its limit. Thus, in the limit,
the points vm lie on each of three circles, the circles with centers a;- and
radii Rj. But three circles whose centers are noncollinear intersect in at
most one point. Therefore, the sequence {vm) converges to a limit v.
This completes the proof of the lemma.
Note that, as far as we know at this point in the proof, r(P) need not

be convex and note further that some of its sides may conceivably lie in
its interior as a result of squeezing which took place while the polygons

rm(P) converged. See Figure 21 below.

Now let v be a vertex of the convex hull K of r(P).

V, u

FIGURE 21

Lemma 2. The vertex v has moved only a finite number, Nv, of times.

To prove this we observe that the angle 0 at a vertex v of r(P) which
is also a vertex of K is less than ir (Fig. 21). The corresponding angles
6m of the polygons rm(P) must converge to 6 by Lemma 1. But if a vertex
vm with angle 6m moves, then 0m+1 = 2w

—
6m. Since

lim Bm
= 0 < t,

there exists a positive integer M such that if m > M, then 6m < t. Thus,
vm+i = vm+2 =

. . . = v. This proves the lemma.
Finally, let N = max Nv for v in K.

Lemma 3. rN(P) = K = r(P).

These equalities hold since, otherwise, a portion of rjv+i(-P ) must lie
outside the convex hull of r^ (P), which, by Lemma 2, is K. This is clearly
impossible. Lemma 3 implies the conclusion of the theorem.|

'"
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The above proof was constructed jointly by Professor R. H. Bing
and the author. I thank him heartily for his enthusiastic cooperation.

Conjecture. If n is fixed, then N is bounded for all P and all choices of
rm'a.

Can you prove or disprove this conjecture? Paul Erdos did.

PROBLEM

23. Prove that, given a convex n-gon with unequal sides, there exists a convex n-gon
with n equal sides, with the same perimeter, but with a larger area.

The proposition that the regular n-gon has a greater area than a con
vex n-gon with equal sides and the same perimeter appears to be as diffi
cult to prove as the Isoperimetric Theorem itself. Can you prove it using
the fact that a bounded monotone increasing sequence of real numbers
has a limit?
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Inequalities and Calculus

6. The Number e

The number t is well known for its connection with circles. You may
know that t is not a rational number. (Have you ever read a proof of
this fact?) One can say even more about w than that it is an irrational
number. The number t is not a root of any polynomial equation of the
form

(1) E akxk = 0,
o

where n is a positive integer, the coefficients a* are all integers (positive,
negative, or zero), and an ^ 0. Any number with this property is called
a transcendental number. A number which is a root of some equation of
the form (1) is called an algebraic number. Thus, we may classify the real
numbers in two distinct ways: on the one hand, the class of real numbers is
made up of rational and irrational numbers; and on the other hand, it is
made up of algebraic and transcendental numbers. Algebraic numbers
may be either rational or irrational. Transcendental numbers are always
irrational. Can you prove that every rational number is algebraic?
Generally, it is extremely difficult to show that a particular number

is transcendental. The fact that t is transcendental was not proved until
the year 1882. C. L. F. Lindemann (1852-1939), a German mathemati
cian, gave the first proof. Another transcendental number, which is of
vital importance in calculus, is named e. The transcendency of e was
proved by the French mathematician C. Hermite (1822-1905) in 1873.
In this section we shall define the number e and become better acquainted
with inequalities in the process.
We shall define e by means of two infinite sequences of positive num

bers, {xn} and {yn}, which have the following properties:

(1) xi < X2 < . . . < xn < xn+i < . • . , that is
,

{xn} is a strictly increas
ing sequence;

(2) yi > y2 > . . . > yn > yn+i > . . . , that is
,

{yn} is a strictly decreas

ing sequence;
35
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(3) every number of the sequence {xn} is less than every number of the
sequence {yn}',

(4) to each positive integer N, there corresponds another positive integer
M, M = 42V, such that

0 < yn - xn < — if n ^ M .

Definition 7. The number e is both the least upper bound of the sequence
{xn) and the greatest lower bound of the sequence {yn} where

xn - U + -J , and yn = (l + -J (n = 1, 2, . . .)
.

Approximate values of some of the numbers xn and yn are given in the
table below and illustrated in Figure 22. (Some of the entries are exact. )

n 1 2 3 4 5 50

Xn 2 2.25 2.37 2.44 2.49 2.69

2/™ 4 3.375 3.16 3.05 2.99 2.74

*3 *5 y50 y5 yz

1.5— i—

FIGURE 22
>i

We shall now show that the sequences {xn] and {yn} defined above
have the four properties promised. To establish the first two it is sufficient
to show that for each positive integer n

xn < Xn+i and yn > yn+1.

1

By the result of Problem 4 with x = 1 and y = 1 -\

—

, we have

.+^HT

1 + n

<
(-0 = 1 +

n + 1

'

n + 1

Therefore by Theorem 6
,

0 + £
)" < 0 + iTTi)" ' or Xn<a;n+1-
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It is easy to show in the same way that if

zn = ( 1 J , then zn < zn+1.

We shall use this result to prove that yn > yn+i. Now,

that is
,

Since zn+i > zn

Therefore,

or

=
\n + l)

-(n+1)

2/n
=
2«+l-

1 1

< —

Zn+1 Zn

yn < yn_i (n = 2
, 3
,

4
, • . .)

2/n+l < J/n (n = 1
, 2
,

3
, . . .)
.

This establishes the first and second properties of the sequences {xn} and
{yn}- It remains to verify the last two properties.
It is easy to see that xn < yn for each n, since yn = (1 + \/n)xn and

1 + 1/n > 1
. We wish to prove that for any positive integers m and n,

xn < 2/m- If to = n, we know this to be true. If n > to, then n = m + k
for some positive integer k; and by the second property,

xn <yn = 2/m+fc < ym, or xn < ym.

You can show in almost the same way that if n < to, then xn < ym, and
thus establish the third property.
Our last task is to prove that given any positive integer N, then

whenever n ^ 4N,

0 < yn - xn < — .

Now, for any positive n

yn - xn = ll + -) xn -

n
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But for any positive n,
Xn <yl = 4,

by the third property. Therefore,

4
0 < yn - xn < - {n = 1, 2, . . •

)•

n

N is given; and for n ^ AN, we observe that

1

Consequently,

4

<
n
- N

0 <yn — xn < — if n ^ 42V.

This completes the proof of the fourth property.
Among other things, we have shown that {xn} has an upper bound

and that {yn} has a lower bound. Therefore, by the least upper bound and
greatest lower bound property of the reals cited above in §5, the l.u.b. xn

n

and g.l.b. yn do exist. The fourth property of the sequences {xn} and
n

{yn] makes it clear that Definition 7 is sound and self -consistent.
The sequences which we used to define e do not lend themselves to

easy computation of the decimal expansion of e, as can be seen from the
table above and the following numerical results. Let An, Gn, and Hn be
the arithmetic, geometric, and harmonic means of xn and yn, respectively.

[The harmonic mean Hn of xn and yn is defined to be

=
2xnyn _ txn

1

+ yn *
\ x

xn + yn \ 2 /

An easy computation shows that

xn < Hn < yn.]
Then we have:

n 1 2 3 4 50

An 3 2.813 2.765 2.757 2.7186

Gn 2.828 2.747 2.737 2.730 2.7183

Hn 2.666 2.700 2.709 2.713 2.7187...

e = 2.7182

Moreover to obtain the entries in the above table easily, it is necessary to
know logio £50 to eight places! We note that each of the means An, Gn,
and Hn converges to e very slowly and that for some time Hn is the best
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approximation to e. This is interesting in view of the following result of
Professor G. P61ya's: The approximation that yields the minimum for the
greatest possible absolute value of the relative error, committed in approximating
an unknown quantity contained between two positive bounds, is the harmonic
mean of these bounds.

Proof. Let the unknown quantity x be bounded by a and b:

0 < a ^ x ^ 6.

We wish to approximate x by p so that the maximum value of

\p — x\
for a t=

i

x ^ b

is least. It is easy to see (Fig. 23) that the graph of \p — x\/x is such that

k\P-x\

(a,0) (P,0)

FIGURE 23

(&,0)

the maximum value of f(x) = \p — x\/x is attained at x = a or at x = 6
.

Now if 0 < c < 1 and 0 < a < 0, then

a < ca + (1

- c)P < /3
.

[In fact, even if a and /3 are complex numbers, ca + (1

—
c)/3 lies on the

line segment joining a and 0.] On the other hand,

a i-, \ ■ /- ' a \ »/*\ b — a—— /(o) + ( 1 - —rr )/(&) = r— -

a + o \ a + b/ b + a

Therefore, either

/(«) ^ r-TT ^ /(&) or /(&) =
g^ £ /(«),

& + o 6 + a

which means that

max ^
ogigd ^ 6 + a

Equality holds if and only if p =
2ob

a + 6
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The formula 1111 "1
e =
0!
+ l! + ^ + 3! +

", = ?;u'
which we shall presently derive, gives accurate approximations to e, namely,
n

£ l/k\ for small integers n. (Recall that 0! = 1.) Using this series and
o

time or using this series, time, and a computing machine, one can show that

e = 2.71828182845

Which method is more time consuming? (However, for large values of
n, n\ is difficult to compute.)

m

In order to prove that e = £ 1/n!, it is not necessary to use the cal-
o

cuius. All we need do is to prove the following theorem, which can be
done by elementary means.

Theorem 20. If n = 1, 2, 3, . . . , then

H)"<?H-r-
Proof. It is easy to show that

We simply use the Binomial Theorem:

0+3f-l+!+
n(n
1

-1)
• 2

n(n - l)(n-
3!

2) 1 1

and observe that

n *n3
+ .. . +

n(n - l)(n-2)-. .(n -k) n n — 1
n n

n — 2 n k
^ 1

nk+1

k+l factors

n

(n = 1, 2, 3, . • .)
.

/ 1\"
Thus, the terms of the sum for ( 1 -\— ) are each no greater than the

n \ nf
corresponding terms of 2

Z 1/t!, and the desired result follows. On the

o

other hand, the inequalities

"1 / l\n+1
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are not so easily established. We know that (1 + l/n)n+1 decreases as n
increases. Hence, if we can show that for each positive integer n

" l / l\r+1

for some r > n, then the theorem is proved. We establish this inequality
as follows.

Let n be given. Using the Binomial Theorem, we see that for any r>n,

2!

+jfr+y-»-,]i+...
... ffr + Wr - 1) . . . (r - fc + 2) "I 1
(2)

+|^
—

lj—

+ . . . + |~
(r + 1)r(r - 1) .--(r- » + 2) — {
] I)

(r + l)r . . . (r - n + 1
) 1 1

rn+1
'
(n+l)\ rr+1'

Let *S be the sum of the n terms enclosed in the curly brackets above.
We shall first prove that

|S|<2(n+l)l"
Simple arithmetic yields the identity

(r + l)r(r - 1) . . . [r - (k - 2)] — = a^*-1 + a2r*-2 +

. . . + a^r

,*

(* - 1, 2, . . . , n),
where the numbers a,- are integers which are independent of r. Let Mk
be the largest of the o,-'s. Then

*-2

(r + l)r(r - 1) . . . [r - (f
c - 2)] —

r*

o = Mfc(r*

* - 1)

rft-i r^Cr-l)

<

1

Since n is fixed, we have only a fixed number of M^'s, namely, n. Let M
be the largest among them. Then

lsl<;—7-
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Therefore if r > 1 + 2nM(n + 1)! = Nu

1

1
*1 <

2(n+l)!
In a similar fashion one can show that the first term outside the curly

brackets in (2) can be made larger than

4 (n+1)!

by choosing r sufficiently large, say r > iV2. Consequently, for

r> Ni+ N2,

/ l\n+1 B

1

is positive.|
As we observed earlier, n\ is difficult to compute for large values of n.

Fortunately, the tables can be turned, and e can be used to estimate n !.

PROBLEMS

24. Show that

___>n!>(__j (n-1,2,...).

hint: Use the fact that TJ x* < e", x* — I 1 + - J .
This is but a crude estimate. A more precise one is given in §7.

25. Derive the inequalities

1

(n + l)n+1 <n1/n (n=3,4,..).

Why not n = 1,2,3, ...?

7. Examples from the Calculus

The Mean Value Theorem of differential calculus is:

// / is a real-valued continuous function defined on the closed interval [a,b]
and if f is differentiable everywhere in the interior of [a,b], then

f(b)-f(a) = (b-a)f(t),

where £ is some number lying between a and b
.

Thus, if upper and lower bounds for /'(£) can be easily found, simple
estimates of f(jb) — f(a) result. Let us consider some examples.
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(a) Let f(x) = x113, a = 23 and b = 27. The function / is differen-
tiable on [a, b] and consequently satisfies the hypothesis of the Mean Value
Theorem on [a,b]. Thus,

3 - 231/3 = 4 • £ • r2/3 (23 < J < 27).
Moreover,

I = (27)-2/3 < r2/3 < [(f)3r2/3 = a-
Therefore,

*V < 3 - 231/3 < A»
or

2.81 < 231/3 < 2.86.

Actually, 231/3 = 2.8438

(b) The equation

x3 + x2 — 5x + k = 0 (A
;

real)

never has two roots on the interval (0,1). For if it should have two such
roots, say a and b

, for some k, then by the Mean Value Theorem, which
applies to the function a

;3 + x2 — 5x + k on any interval whatsoever,

0-0-0-/(6) -/(a)- (6-a)/'(£)
= (b

-
a)[3£2 + 2£ - 5]

(0 < a < £ < b < 1).

But 3£2 + 2£ — 5 is negative on (0,1); hence, the assumption that / has
two zeros on (0,1) leads to a contradiction and is false.

(c) The Arctan function is differentiable for all real x. Therefore,
by the Mean Value Theorem, if x > 1

,

1 + fArctan x — Arctan 1 = (x — 1
)
t , 2 (1 < £ < x).

In particular, since (1 + £ ) decreases as £ increases from 1 to 9/8,

8 1 64 , ,„ ,11 1

145
=
s'eT+Sl

< AMta9^ - ArCtan l < 8*1+1 = I^;
or

Arctan 1 + .0551 < Arctan 9/8 < Arctan 1 + .0625.

Since Arctan 1 = ?r/4 « .7854, we find that

Arctan 9/8 = .844 ± .004.

This estimate is rather good, considering the simple observations on which

it is based. In general, however, the Mean Value Theorem is useful only
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when crude estimates suffice. On occasion it serves to give rough estimates
of functions so complicated that more exact ones are exceedingly difficult
to obtain.

(d) Let f(x) = (a2 + x)112. Clearly, / satisfies the Mean Value
Theorem on [0,6] if b is positive. Thus, if b > 0,

(3) /(&) = l«
l +

2(a2^)1/2
(0<{<6).

It follows that for every x between 0 and b (including {)

Consequently, replacing (a2 + {)1/2 by \a
\ + b/2\a\ in (3), we find that

b

f(b) > \a
\ +

[« + 5
i]

Therefore, if a and b are positive, we have

For example,

3tV < VTT < 3
|

(o = 3
, b = 2).

Suppose that / and g are continuous functions on the closed interval
[a,b]. It is a fundamental property of the definite integral that if

f(x) £ g(x)
for all x on [a,b], then

[ /(*) dx £ [ g(x) dx.

The inequality remains true, for example, if g is discontinuous at a or b,

provided the limits lim g(x) and lim g(x) exist and are finite. Further,
x—*a x~*b-

if g(x) > f(x) at at least one point of continuity of / and g on [a,b], then

/ f(x) dx < I g(x) dx.
Ja Ja

This simple theorem can be used to derive many interesting inequalities.
The examples that follow are but a small sample.
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(e) The inequality of Exercise 5, §1, may be derived as follows.
We seek to estimate

io«

Z n"1/2.
i

It is natural to choose (Fig. 24)

f(x) = x-112, if x > 1,
and

g(x) = rCm, if n ^x <n+ 1 (n = 1, 2, 3, • • •
)•

O

.+- .+- .+-

(1,0) (2,0) (3,0)

FIGURE 24

(106,0) x

Then clearly,

fn+l rn+l
n-112 = / g(x)dx> x-112 dx = 2(Vn + 1 - Vn).

./n ./n

Hence,

£ n_1/2 = / jr(«) <& > / a;-1/2 da; = 2(103 - 1) = 1998.
10"

The inequality 1999 > X n-112 can be similarly demonstrated.

i

(f) Among the early triumphs of the calculus were the results of
Leibnitz and Gregory that

X * (—1)W ^ (—1)W

4

= ?1^T and ln2 = ?^~ •

The most elementary and elegant derivations of these formulas are based
on inequalities. Consider the function I, defined on the nonnegative
integers, whose values are

l(n) = / tan"

Jo

Bdd (n = 0
,

1
, 2
, . . .)
.
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A simple substitution and integration by parts reveal that for n = 1, 2,

•w/t

Z(2n) = P
Jo

= - J (2n - 2) + / tan2""2 6 sec2 5 d»,
Jo

tan2"-2 0 (sec2 0 - l)e*0,
.x/4

= -I(2n - 2) +
2ra - 1

-drr-t-"2"-4'*^]

2ra — 1 2n — 3 2n — 5 4

namely,

(4)
x " (-1)*
4 i 2A; - 1

Similarly, one can show that

(5) |ln2-E
" (-1)k+i
2k

= Z(2n).

7(2n + 1).

On the other hand, since 0 < tan 6 < 1 on (0,ir/4), 7(n) decreases as n
increases; that is

, I is a strictly decreasing function of n. Therefore, since

or

I(n) = -7(n - 2) +

I(n - 2) + I(n) =

n - 1
1

(n = 2
,

3
, . . .)

n- 1

we have the inequalities

J(n) < ^77 TT and 7 (n — 2
) >

In short,
2(n - 1)

1

2(n - 1)

< I(n) <
2(n +1)

w
2(n - 1)

We obtain the following results by applying these inequalities to (4) and (5):

2(2n + 1) 4 T 24-1 2(2n - 1)
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and

< In 2
1

(-D *+i
2n2(n + 1)

Now we take the limit as n —» =o in the above inequalities, and in the limit
we obtain the desired infinite series. Note that these inequalities provide
sharper estimates of the differences between the sums of the infinite series
and their partial sums than does the usual alternating series test estimate
of "less than the absolute value of the first neglected term." The inequali
ties also exhibit the fact that the series converge so slowly as to be poor
tools for computing either t or In 2.
(g) The product which we studied in §1 was more carefully estimated

by the British mathematician John Wallis (1616-1703) three hundred
years ago. He showed that

(6) <
1 • 3 . . . (2n - 1)

V*(n + i)
"
2-4 2n

< (n = 1, 2, . . .)
.

irn

In order to derive Wallis's result, one considers the real-valued function J

defined on the nonnegative integers, whose values are

/.x/2

J(n) = / sin" 6 dd (n = 0
,

1
, 2
, . . .)
.

In analogy with the last example, we can obtain a formula connecting
J(n + 2) and J(n): a simple substitution and integration by parts show
that

/.x/2

J(n + 2) = / sin" 6 (1 - cos2 6) dd

°r
^

T/2 nd[sinn+1e/(n+l)]= J(n) - /Jo cos 6

d6
dd

T, . rsin"+1 6 cos 6~\T/2 , f= J(n) - ——— + /L n + 1 Jo Jo

T/2 sin"+1 6 sin 0

71+ 1

dd

= J(n) n+ 1

J(n + 2).
Thus,

J(n + 2) = ^4"4 *(*).n + 2

It follows by repeated application of this formula that

2n - 1 2n - 3 3
2

3 i
2n

'

2n - 2 2

"

2
'

J(2n) =
2n 2n - 2

2n - 1 2n - 3

^(0)
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and

J(2n + 1)
2n 2n - 2
2n + 1 2n - 1
2n 2n - 2

Therefore,

But

since

J(2n + 1) J(2n) =

2n + 1 2n - 1
1 T

fc|./(i)i

(n = 1, 2, . . .)
.

2n+ 1 2

J(2n) > 7(2n + 1) and J(2n - 1) > /(2n),
0 < sin 6 < 1 for 0 < 6 < -

Consequently,

y2(2n) > —-— .£ and 72(2n) < — .J
,

2n + 1 2 2n 2

or

2(2n +

/2n- 1

1)\ 2n
- 1 2n - 3 3 1\2 a-2 «. .

This inequality is equivalent to (6). Incidentally, John Wallis invented

(in 1655) the symbol "«." for "infinity."

8. Approximation by Polynomials

Taylor's Theorem, published by the English mathematician B. Taylor

(1685-1731) in 1715, is a generalization of the Mean Value Theorem. In
some contexts it is even more useful. The Mean Value Theorem gives an

approximation to a differentiable function / in a neighborhood of a point a.

fla)+f(aHx-o)-^\

f(a)+f(aKx-a)+^-(x-a)2

FIGURE 25
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The approximation is /(a). It is natural to attempt to improve this ap
proximation by using (Fig. 25) an nth degree polynomial Pn(x) in (x — a)
which satisfies the conditions

P«Ha)=fw(a) (*-0,l,-.-,n).

These conditions imply that

Pn(*) = Z:^^(*-a)*
o k\

Lagrange's version of Taylor's Theorem is:

Theorem. If / and its first n + 1 derivatives are continuous on an open
interval (c,d), and if x and a are points of {c,d), then

/« = *.<*> +/-^ri5r (*
-
a)n+1

where 0n+i is some number between a and x.

A particularly simple proof of this theorem, which is perhaps less mysteri
ous than some others, is based upon some elementary inequalities.

Proof. The theorem is obviously true if x — a. Throughout the
proof we shall therefore assume x t* a. Let the function R = f — Pn.
We seek to demonstrate that there is a number 6n+i, lying somewhere
between a and x, such that

R(x)=f- _};t, (« - «)n+1-
(n+ 1)!

Since /has n + 1 continuous derivatives on (c,d) and since Pn has infinitely
many, R is n + 1 times continuously differentiable on (c,d). Further,

(7) Rw(a) = 0 (k = 0,l,---,n),

and

#n) {x) _ ,<n) (x) — p(n) (x) (J
B on (C)d)).

But P^n)(x) is constant (Pn(x) is an nth-degree polynomial), and P^(o,) =

fM (a). Therefore, P™ (x) =/<") (a), and

B<n)(x) =/(n)(x) -/(n)(o).

Let us now suppose for the sake of argument that x > a. The func

tion /(n) (x) satisfies the hypothesis of the Mean Value Theorem on [a,x].
It follows that

/<n>(*) -/W(o) -/<"+»(*)(* - a),
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where di lies somewhere between x and a. Therefore,

(8) Rw(x) =/(n+1)(91)(a;-a).

Since /(n+1) is by hypothesis continuous on (c,d), it is bounded on the
closed interval [a,x]. Let m and M be the maximum and minimum values
of /(n+1), respectively, on [a,x]. Then by (8),

m(t - a) £ Rin)(t) g M(t - a) (t on [a,x]).
Moreover, inequality must hold for at least one t unless M = m. Conse
quently,

m

or by (7),

fx fx Px

I (t- a)dt < R(n) (t) dt <M I (t - a) dt,Ja Ja J a

\m(x - a)2 < ^"-"(x) < \M(x - a)2.
Since /(n+1) is continuous on [a,x], there must be some number 02 on (a,x)
such that

/(n+» (02) = y (recall that x * a).
(x — a)

Thus,

(9) #*-" (*) = £/(n+1) (02) (x - a)2.
Repeating the above argument while using (9) instead of (8), we can show-

that

fl(n-2)(z) = ^/(n+1)(03)(*-a)3,

where 63 lies between a and x. After a total of n steps of this kind we
reach the conclusion:

(n+ 1)!

for some number 0n+1 between a and x. An analogous result holds if
x < a. I

As an example of the use of Taylor's formula, we estimate the integral

1=1 x112 sin x dx.

The sine function fulfills the hypothesis of Taylor's Theorem on any
interval. We apply the theorem to sin x with a = 0, and we find that

x3 , sin 0 . .
sin x = x — — + -77- * (0 < 0 < x).
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Thus,
ZS . X3 X*

x < sin x ^ x
3!

_
3! 4!

if 2 ^ x £ 1. Therefore,

or

23-17V2-49 23-17V2-49 2

33-5
< /=

33-5 +1L4!(2 —1)-

Since 2(211/2 — l)/(4! • 11) is about -fa, this estimate is not very sharp.
On the other hand, with time (and that perhaps means money) and a
computing machine one could compute the value of I with an error less
than 10— 4 by using Taylor's formula with a large enough n. For the
purposes of such a computation it would be better to expand sin a; in
powers of (x — ir/2), and it would be still better to approximate the
integrand by different functions on each of several subintervals of [1,2].
We next consider a second application of Taylor's Theorem. The

integral

K{k)
■I

T/2 de

o Vl - k2 sin2 0
is called the complete elliptic integral of the first kind. Let us compute
K(j) correctly to four decimal places. Consider the function/, defined for
x < 1 by f(x) = (1 - x)-m. If 0 < x < t^ (tV ^ fc

2

sin2 0 ^ 0), then
Taylor's Theorem guarantees that

where

Thus,

f(x) = 1 + \x + %x2 + R(x),

R(x) = 5- 2-V(l - 0)-9/2 (0 < 0 < -jV)-

„,r, r/2( 1 sin20 3 sin4 0\ , I

5 /i5\-9/2 r/2 . 6 „
< -r,—^ — J / sin6 0 dd
24(16)3 \16/ J0

36(15)5/2

< KT4,

smce

Jo 2 • 4 . . . 2n 2
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An estimate of K (\) correct with an error less than 10-4 is therefore

i\
l
+ L\+ s

.1^1 or L5962....2L 32 2 2U 2«4j

Approximations to definite integrals may often be obtained much
more simply. For example, if k > 2

, then
1 f1 , f1 xdx f1 xdx ,.„,„ ,,

Taylor's Theorem guarantees that, subject to rather stringent condi

tions, a function can be approximated by a particular class of polynomials,
n

namely, those of the form Y.fw(a)(x — a)k/k\. Let us call them the

o

Taylor polynomials of / at a. If the graph of / is not smooth in the neighbor
hood of the point (o,/(a)), as in Figure 26, then near a the derivatives of

FIGURE 26

/ may be very large in comparison with /(a), even if they exist; hence, the
Taylor polynomials of / at a may be poor approximations to / outside of

a very small neighborhood of a. Weierstrass discovered a theorem which
gives one hope that other more useful types of polynomial approximations
to continuous functions can be determined.

Theorem. (Weierstrass Approximation Theorem). If / is continuous on
[a,b], then to each positive number e there corresponds a positive integer n
and a polynomial Pn of degree n such that

\f(x) - Pn(x)\ <« if a^x £6.
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The polynomial Pn and n are, of course, not unique. Thus; polynomial
approximations to any continuous function exist which have a predeter
mined accuracy on an entire interval of fixed length. Naturally, they
may be hard to find; not all things that exist can be constructed. Never
theless, we shall prove this theorem by exhibiting a sequence of polynomials
[Bn(x)}, depending on /, which converge uniformly to / on [a,b]; namely,
we shall show that, given e > 0, there exists a positive integer N such that

\f(x) - Bn(x)\ < t
for all x on [a,b] and all integers n> N. The discovery of the polynomials
Bn and their remarkable property is due to the venerable Russian mathe
matician S. N. BernStein (1880— ).

Definition 8. The polynomial

is the BernStem polynomial of degree n corresponding to a real-valued
function / defined on [0,1].

Theorem 21 (Bernstein). If/ is continuous on [0,1], its Bern§tem poly
nomials Bn converge uniformly to it on [0,1] as n —> <*>.

The question immediately arises: how did Berngtein ever think of
approximating a function by such polynomials? Conceivably, the answer
is that he knew the theory of probability well enough to think of applying
it to approximation theory. Suppose one has a coin with the property
that the probability of its showing heads after a single toss is x(0 ^ x ^ 1).
The probability of its showing tails after one toss is then 1 — x. Moreover,

the probability of exactly k heads in n tosses is ( J xk(l
— x)n-k. Thus

it must be that :
'

Y. ( , ) xk(l
— x)n-k s* 1 = ]T (probability of exactly k heads in

0 ^ ' ° n tosses of the coin),

since some number of heads from 0 to n must have appeared in n tosses
of the coin. And indeed,

1 = [(1 - x) + x]n = £ xk(l - x)n-k{
o 09

A Bernstein polynomial of degree n associated with a function/ may be
assigned the following interpretation. Given a positive integer n, consider

the set of numbers {f(k/n)}, k = 0, 1, . . . ,n. If n is large and x lies
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somewhere in [0,1], then one or more of the numbers f(k/n) he close to /(*)'.
The question is: If x is some number in [0,1] to be chosen at random in the
future and if / is some function continuous on [0,1], also to be chosen at
random in the future, which weighted sum

if C(k,x}f Pj
\ (i C(k,x) = l) ,

of the numbers f(k/n) should one prescribe so as to be sure of a good
approximation to f(x) when x and / are chosen? The answer clearly
depends on what is meant by a "good approximation." If this is to mean
that

max fix) - Zc(h,x)f\^

is small, then Bernstein's choice of the weights c(k,x) is a good one. He

chose the c(£,z)'s to be the probabilities II xk(l — x)n-k. It is a simple
consequence of a theorem called the Law o

f Large Numbers, in the theory
of probability, that the weighted sums Bn(x) corresponding to this choice
of c(k,x) converge uniformly to / on [0,1] as n — > » . [Suppose in a certain
population Ck men have exactly /& wives. Then the total number of wives

is Y,fkCk', and one would expect that if one chose a man at random, he
would have

wives, namely, the average number of wives per man. Moreover, the
larger the population the greater would be one's expectation that a man
chosen at random would be an average man. Now suppose that an out
come of exactly k heads in n tosses of the aforementioned coin is rewarded
with f(k/n) dollars. The expected number of dollars after n tosses would
be, in analogy with the expected number of wives in the last example,

?'©(;)e/ - ;**(!-*)

£Q**(i -*)"-*

n-k

which is simply Bn{x). For a careful, detailed exposition of probability
theory, I suggest that you read An Introduction to Probability Theory and
Its Applications, Vol. 1, by W. Feller (John Wiley and Sons, New York,

\n—k1950).] Thus, once Bernstein thought of the probabilities [ J x (1

— x
)

he knew Theorem 21. After his discovery, he was able to prove Theorem 21
without using the Law of Large Numbers.
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We complete our discussion of BernStem polynomials with Bernstein's
proofs of Theorem 21 and the Weierstrass Approximation Theorem. His
proof of Theorem 21, although it is elegant, simple, and clear, is demanding.
I urge you to accept the task of mastering it as a challenge. If you take
up the challenge and master the proof, you will have won a great prize.
Those interested in still greater rewards should read N. I. Ahiezer's superb
book, Theory of Approximation, translation by C. J. Hyman (F. Ungar
Publ. Co., New York, 1956). (note: The mathematical English of the
translation is often awkward; the original Russian version reads much more
smoothly. The translation of the original Russian title is Lectures on the

Theory of Approximation.)

oss(H,CD**(i-*)n-'sl
for 0 ^ x ^ 1.

Proof. For brevity, we write

0* = rW - *)n-*.
If we can evaluate the sums X) k yk/n , £ xkgk/n and £ % Qk in short,oo o

simple form, then we can perhaps estimate the sum involved in the state
ment of the lemma. We already know that

(10) E X*9k = x2.
o

Now consider the identity

(11) (u + v)n = £ (f
j

ukvn-\

n

which reduces to 1 = £ grj, when u = x and v = 1 — x. If we assume u

o

to be a variable and if we differentiate both sides of (11) with respect to u,
we obtain the identity

or

n(u + t))"-1 = £ k f Jm*-V-*

(12) nu(u + v)"-1 = E k I J uV-'.
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Thus upon choosing u = x and v = 1 — x, we find that

n

Y. tyk = nx,
o

or

(13) Y.x-gk = x2.
o n

What was successful once may be successful twice; hence, we next differ
entiate both sides of (12) with respect to u. The result is

n(u + »)n_1 + n(n - l)u(u + v)n-2 = L * ( . ) " »

If we multiply both members of this identity by u/n2 and again set u = x
and v = 1 — x, we find that

d4) fc3»=;+(l-;y-
o n n \ n/

It now follows from the identities (10), (13), and (14) that

±(--x)2gk = x2-2x2 + - + (l-±)
o \n / n \ n/-

(x2
- x)
n

—-(*-|)2 + }
n

x2

Therefore,
n /jfc \2 i

o \n / 4n

Equality holds if and only if x = f .|
Besides this lemma, we need in the proof a fundamental property of

continuous functions, which may be new to you. This is uniform continuity.

Definition 9. A function /, defined on an interval [a,b], is uniformly con
tinuous on [a,b] if to any positive number p (no matter how small), there
corresponds a positive number d such that the hypothesis

xi and x2 lie on [a,b] and |x
i —

x
2
|

< d

implies the conclusion

|/(*i)-/(*2)| <P-

The result we require is
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Theorem. If a function is continuous on the closed interval [a,b], then
it is uniformly continuous on that interval.

The reader who is interested in its proof will find it in any good book on
advanced calculus. It is easy to prove, however, that every function having
a continuous derivative on a closed interval [a,b] is uniformly continuous there.

Proof. Let p be given. Since / is continuous on [a,b], f satisfies the
hypothesis of the Mean Value Theorem there. It follows that if Xi and
x2 are any two points of [a,b],

\f(x1)-f(x2)\ = \f'(6)\ \x2 - Xi\
for some 0 lying between xi and x2. The hypothesis that /' is continuous
on [a,b] also implies that /' is bounded there, say by M. Therefore,
whenever \x

i —

x
2
\

< p/M = d
,

\f(xi) — f(x2)\ < p.|

Proof of Theorem 21. We are given an e > 0. We seek to demon
strate the existence of an integer N such that if n > N, then \f(x) —

Bn(x)\ < e for all x on [0,1]. We begin by asserting the existence of two
other numbers. First, since /is continuous on [0,1], so is |/|; and therefore

|/
| has a maximum, M, on [0,1]. Second, / is uniformly continuous on

[0,1], and consequently we know that to the number «/2 there corresponds
a number 5 > 0 such that

(15) |/(*i)-/(z2)|<^

whenever |x
i —

x
2
\

< S and xi and x2 are points of [0,1]. We also know

f(x) = f(x) • l = f(x) .I^=E f(x)gk.

0 0

Thus,

\f(x) - Bn(x)\ - |e [/(
*)

-/@]^ ;

and it follows from the triangle inequality (see §2) that

(16) |/(*) - Bn(x)\ g £ -'(!)/(*) - / ( - k (note that 9k ^ 0 on [0,1]).

Our problem is to show that the sum on the right is less than e if n is

chosen large enough. Imagine that an x on [0,1] is given. Surely the terms

corresponding to those values of k such that Jc/n is close to x are small.
It turns out that with the help of the lemma we can prove that the remain
ing terms are also small, provided n is large enough. We proceed by divid
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ing the n allowed integers k into two classes, A and B:

k
k is in A if

k is in B if

x —

x —

<S;

^ S.

The classes A and B depend upon x and n. Nevertheless, we can obtain
an upper bound for the right-hand member of (16) which is independent of

x and n, provided n is sufficiently large.
Suppose k is in A. Then by (15),

/(*)-/- 6

<2
Therefore,

(17) £
tin A
/(*)-/ 9k

A-in A

On the other hand, if k lies in B, then

x
n
x2 *■̂ 1

so that

z
kuiB
/(*)-/ fc ^ z

AinB
/W-/1- ^ 9k-

But

/(*)-/(- ^ !/(*)! + < ^ M + M = 2M.

Therefore,

tinB

,, N ,//b\ 2M ^ (k \a 2M"/k V
fc-

We now apply the lemma and conclude that

z /(*) - / M
9k ^-&

But 5 depends only on t and /, and M depends only on /. Consequently,
there is a smallest integer, call it N, satisfying the inequality

M_ t

n*2<2'
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Hence,

(18)
tinB
/(*)-/ gk < - if n ^ N.

We now complete the proof. It follows from (17) and (18) that

o
/(*)-/(- 9k = Z

A in .4
/(*)-/(- 0* + £

kinB
m-n- 9k

e , «

<2
+
2
=
e"

provided n ^ N. Using this result and (16), we obtain the desired final
conclusion.!
It remains to prove the Weierstrass Approximation Theorem.

Proof. A function /, continuous on an interval [a,b], is given. Now
as t varies from 0 to 1, a + t(b — a) varies from a to 6 (Fig. 27); and con
versely, as a + t(b — a) varies from a to b, t varies from 0 to 1. Let

O t 1

FIGURE 27

F(t) = /(« + t(b — a)). Then F is continuous on [0,1]; and given t > 0,
there is an N such that

\F(t)
- Bn(t,F)\ < t if n > N.

[Bn(t,F) is written for Bn(t) in order to emphasize the fact that Bn de

pends upon F.] But

4
X — ° At = and
b — a F(f^)- f(x).

Therefore,

/(*) - Bn (l , f) \< e if n > N.
I \b - a J\

Moreover, Bn [ , F ) is a polynomial of degree n in x, since (a
; — a
) •

\b - a /

(b — a
) is linear in x; and Bn{t,F) is a polynomial of degree n in t.%
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PROBLEMS

26. (a) Show that
9 "5 1 3

Can you improve these estimates?
100

(b) Find upper and lower bounds for £ In n.l
27. (a) Prove that if x > - 1,

in a +.) - fr4-# = t (-d^1? + (-1)" frr-,*-Jo 1 + 1 i fc Vo 1 + 1

(b) Next estimate the integral / t"(\ + <)_1 dt and show that if |x
| g \,

JO

(-i)nr«"(i +*)-1<ft s2 /"V<ft sr&i + ir1.
.'0
'

I l«o I

(c) Using the above results, obtain the conclusion

n x2k+l
In (1+ x) - In (1 - x) = 2 £ —— + B,

o 2k + 1

where

|ftn| S
S i-i—Hl + n)-1 if |a
;| Sj.

1 + X
For example, if a; = — §, In = —In 2; and therefore,

1 — x

Improve this estimate by taking advantage of the fact that | — §| < %
.

28. Establish the following inequalities:

fV2 (fe x

0

2 Jo Vl -xi 6

l r1 dx <-.

1 /■■

2<7o V4-x*+x4 ^6

te) 28<y0 (i + xn)i/8<2r
/.V2 7

(d) 0 < / sin x In (1 + x) dx < — -

A) 96

/■V2

0</
29. Since

2 8 4

(1 + 2X)1/2 =l+*_5-+f--f-(l + 2te)-7" (0 < e < 1
)

4 O O

and since

1 x2 x2 x8 1 x4l+i — • =l+x 1 • >

2 1 +x 2 3 2 1 +x

(1+^1,2-[1+I-^rfx]=i(rfx-(TT^)'
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Prove that

(*2 + v)m - ('*
'

+ iR
-
4|ui
g +.))[< afc

if 0 < »/w2 < ».
For example,

^-A+i * Y<-?i

V 3 4.3(18+2)/| 32-3

|Vil - 3.31666 . . . | < 2.3 • 1(T*.
30. The most often used estimate of n! is Stirling's:

(fcm)1/2 (jY < n! < (2rt)1'*(jY«»
Derive this result following the plan given below.

Outline o
f proof. Let On = n! n-1/2 f - J (n — 1
,

2
, . . .)

12n

Then

ffln+i «\ »/ Ofi+i \ 2/ \ n/
Show, in order, that:

(a) -0^- 7-^-5

2 -_ , o'(2A + l)(2» + l)2«-1
2n + 1>

-, . On A 1 ^ 1 ^ 1

(b) In-— = E — , ,Wo_ , -55 <; ^
on+1 V (2A + 3) (2n + 1)2*+2 3(2n + l)2 V (2» + I)2*

(c) 0<ln— <
an+i 12n(n + 1

)

hint: Sum the geometric series in (b).
Thus,

lnan+1<lnan<I^-Ii^TT]+lna^1.
(d) Therefore,

xn m In on - —- < In on+i - — = xn+i,
12n 12(n + 1
)

yn ■ In an > yn+i, and yn > xn so that

xi <...<*n < avu < xn+2 < . - . < yn+2 < yB+i <»n<...< »1.
Let X = l.u.b. xn = g.l.b. yn. Then X is well defined, and lim an = e\

(e) Therefore,

,. 4 ,. /2V/2 2-4 2n /n Nl/.lim on = lim — = lim ( -J — = (2x)"8.
n-» » n-> » Clin n- » V»/ 1 • 3 (2n - 1)

[hint: Use Wallis's inequality (6).]
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(f) Consequently, one-1/1SB < (2x)I/2 < on
or

(2m),/,(n/e)B < n! < (2xn)1/,(n/«)ne1/12".

Can you improve this result and show that

n!> (2xn)1/2('jYe1/1«n+1)?

[reference: "Note on Stirling's formula" by T. S. Nanjundiah, American
Mathematical Monthly, 66 (1959), pp. 701-703.)

31. Compute the first five BernSteln polynomials for the function \x
— §| on [0,1].

Sketch their graphs and find max I \x — \\ — Bn(x)\, n = 0, 1, 2, 3.
[0,1)

32. Let / = sin 2rx. Compare the first four BernSteln polynomials of / on [0,1] with
the first four Taylor polynomials at ^ of /.

33. If e is a rational number p/q, where p and q are positive whole numbers, then
by Taylor's Theorem applied to ez at x = 1

p «+2 1
=^ +
o" *! (9 + 3)1

where 0 lies somewhere between 0 and 1. Prove that e is not a rational number,

i.e., that e is irrational.

34. P. L. Oebysev (1821-1894), a Russian mathematician, was the principal founder
of the theory of approximation. A set of polynomials is named for him. Go to the
library and find out what the Cebysev polynomials are and why they are useful.
note: Westerners spell Cebysev's name in a number of ways, often beginning
with a T and ending with a double /. The correct pronunciation of his name,
contrary to popular American custom, is Che-by-shoff': che as in check, by roughly
as in be, and shofi as in sh + off.
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Three Modern Theorems

9. Power Means

The Isoperimetric Theorem is an ancient theorem that breathes life
into mathematics even today. There can be no better test for modernity.
The theorems we shall discuss in this chapter meet the same test; and,
surprisingly enough, they are products of modern times. These theorems
may be less celebrated than the Isoperimetric Theorem, but they play
key r61es in several growing branches of mathematics and are in steady
use. They were discovered by the nineteenth century mathematicians
Cauchy, Bunyakovskii, Holder, and Minkowski.
Arithmetic and geometric means are special cases of power means,

which are the means upon which the Cauchy, Holder, and Minkowski
inequalities are based.

Definition 10. The power mean, 9Rr, of order r of n positive numbers
<*i, . . • , On is

A power mean, 9Ri, of order 1 is, of course, nothing but an arithmetic mean.
Two other power means have special names: 911-! is a harmonic mean, and
9n.2 is a root mean square. A geometric mean Gn is also denoted 9R0- The
reason for this is clear from the following computation.

lim 9Rr(ai,a2) = lira 2-1/r(aiv+ a2)1/r
r-»o r-»o

In [1 + (a2/ai)r] - In 2'd exp -aim
lr-o r

(a2/oi)rln (a2/ai)= ai exp lim
lr_o 1 + (a2/ai)r

= (aia2)1/2

= G2(ai,a2).

(L'Hdpital's Rule)

63
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In addition to further justifying the choice of notation for Gn, the
next theorem (which was proved by 0. Schlomilch in 1858) compares the
various power means of a fixed set of positive numbers.

Theorem 22. If p < q, then 9Hp ^ 9Rg. Equality holds if and only if
CLl
= 0,2 = . . . — On-

Proof. If q is positive, it is easy to show that 9R8 Si 9n.0- One simply
observes that by Theorem 7,

(n
\l/n 2- a.-

Equality holds if and only if ai = . . . = on. It follows from this inequality
and Theorem 6 (extended to the case of real exponents) that 9R9 Si 9R0,
with equality holding if and only if ai = . . . = on. If p is negative, the
inequality 0Rp ^ 9R0 is similarly demonstrated. In particular we have
shown that 9R_i ^ 911 1, a result which can be written more elegantly as

(?*)(? s)s"2
There are two cases yet to be considered: 0 < p < q and p < q < 0.

We first assume that 0 < p < q. It follows from the definition of 9R4 that

Let

Then

9JI,
9Rp \ n

bi = teT (i = 1, .
. • , n).

(1)
9R,

9R„

We seek a helpful lower bound for £ 6?/p. Such a bound may be ob-
i

tained in the following way with the aid of Theorem 9. We first observe
that since

Up

9R,

9Rp
'

Y.bi = n.
i
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Now, by hypothesis, q/p > 1. Also, since &
,- is positive, we can write

b
i = 1 + x%, where Xi > — 1. Therefore,

n n n

E *< = E &i — E 1111
= n — n
= 0

.

By Theorem 9
,

But

L (bi)9lp = E (1 + *09/p £ E (l + -*<Yi i i \ P /

i \ P / Pi
We can now conclude that

(2) E 6?/9 ^ n.

i

Equality holds if and only if 6i = 6
2 = . . . = b
n = 1
. The inequality

namely, the inequality 9ltp ^ 9H9, follows from this result and (1). Equal
ity holds if and only if ai = a2 = . . . = an = 9Hp.
To complete the proof of the theorem, we must consider the case

p < q < 0. In this instance, 0 < q/p < 1
; hence, we obtain the inequality

(2) with the sign of the inequality reversed:

£ bqi/p £ n.

i

Since q is negative, it follows that

E Wp\ ^ n1/9.

Together with (1), this result leads to the desired inequality. Again,
equality holds if and only if all the a,'s are equal. |

To conclude this section, we consider a simple, clever argument
involving harmonic and geometric means. In 1954, D. K. Kazarinoff
used them to obtain an improvement of Wallis's inequality (6) of §7

[Edinburgh Mathematical Notes, No. 40, pp. 19-21, 1956]. He considered
the integral

ric/2J (a) = / sinaxdx

Jo
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for nonintegral values of a, and he was able to show by an elementary
argument —it involves a function called the gamma function, and we omit
it—that if a > — 1,

(3) J(a) < 9R_![J(a - l),J(a + 1)].
Now the geometric mean of two unequal positive numbers lies between
them. Thus by (3),

(4) J(2n) < 9R0U(2n),9ll_1[7(2n - l),J(2n + 1)]} (n = 1, 2, . . .).

Let us adopt the notation

(2n)M = 2-4-6- . . 2n

(2n+ 1)!! = 1-3-5 --. (2n + 1).

Then, as we observed in §7,

(2n - 1)!! t (2n)U

W=nwT'i and J{2n + 1) = ^TWi (—1.2,...).
Therefore, the inequality (4) can be written in the form

(2n- 1)!!
(2n)!l

< [(n + \)*Tm (n - 1, 2, . . .),

a result which improves one of the estimates in Wallis's Inequality.
In order to see that it might be useful to consider (3) for nonintegral

values of a, let us consider it for a = 2n and try a proof by induction in
this case. For a — 2n, (3) may be written in the form

«v r [(2n)!!]2(2n-2)H =W

4 (2n
- l)!(2n - 1)!1(4» + 1) A ;

'

When n = 1
, this inequality becomes

* 2
2 - 1 4- < = -,

4 1-1-5 5

which is obviously correct. Suppose that (5) holds forn = k
. If n = k + 1
,

the right-hand member, f(k + 1), is

(2fc + 2)2(4fc + 1)

W '
(2k + l)2(4fc + 5)

or

16fc3 + 36/c2 + 24fc + 4

( ) *
16fc3 + 36/c2 + 24fc + 5

'
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which is
,

alas, a wee bit smaller than f(k) so that the inequality

l<f(k + l
)

is not at all obvious if one only knows that

4

10. The Cauchy, Bunyakovskii, Holder,
and Minkowski Inequalities

Theorem 23. (Holder's Inequality). If x and y are positive, if x + y = 1
,

and if the numbers oi, . . . , an and 6i, . . . , bn are nonnegative, then

(6) z m g (e fli
j • (e &.
J .

or equivalently
n / n \x / n \y

(7) E a,*,- ^
(^
E ak" j '(S^j .

Equality holds in (6) if and only if bi = b
2 = . . . = b
n = 0 or

ai — <l2 _ _ «n

6
i

b
2 b
n

<
z.

-N~,

>

The special case ( c^-

^

of (7) is known as Cauchy's Inequality. He published it in 1821. Holder's
generalization appeared in 1889 ["tJber einen Mittelwertsatz," Gottinger
Nachrichten, pp. 38^17, 1889]. Cauchy's Inequality may be interpreted
geometrically as follows. Divide both sides by the right-hand member,
and consider the angle formed by the vectors (oi, . . . , an) and (6i, . . . , bn).

(If it makes you more comfortable, assume that n = 3.) The cosine of
this angle is precisely the left-hand member of the transformed Cauchy
Inequality, which thus says that the cosine of an angle may not exceed 1.

Proof of Theorem 23. We shall derive (7). If either oi = o2 = ... =
an = 0 or 6

i = b
2 = . . . = b
n = 0, (7) is obviously correct. Henceforth

we may therefore assume that neither alternative holds. Let us write the
inequality (l') of §4 in the form

(8) ym g 1 + m(y - 1) (y > 0 and 0 < m < 1).

t i
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Suppose for the moment that y = A/B, where A and B are positive.
Then by (8),

AmBl-m <. B + m(A - B) (0 < m < 1);
or, since we may replace m by x and 1 — m by y,

(9) A*W £xA + yB.

Equality holds if and only if A = B. Inequality (9) is almost Holder's
inequality. (If x = y = \, note that (9) reduces to the Theorem of
Arithmetic and Geometric Means with n = 2.)
Now let

l/x

At--?—, B> = bl">

E <kv* E Wv
1 1

n

and consider E ^*^f- It follows from (9) and the definitions of Ai and
i

Bi that

E 4?£? £ x E 4,- + y E Bi - * + y - 1,
i i i

or
n / n \ re / n \ »
E a,*, ^ (E a^J (E ft!'" J

Equality holds if and only if

— = —
(» - l, . . . , n),

E a*1/* E b\'v
i i

that is
,

if and only if

a
? _ a,2 _ _avn

Inequality (6) can be obtained from (7) by replacing Oj by a* and 6
,- by

6?in(7).|

PROBLEM

35. Give an alternative derivation of Cauchy's Inequality, and show that it holds for
any real numbers whatsoever be their sign, hint: Consider either

0(0 = E (fit + bit)2 or E E (ai6y - <*A)S.i t=iy=i

A third basic inequality in modern analysis was discovered by the
great geometer Hermann Minkowski (1864-1909). It is a generalization
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of that simplest of observations about Euclidean space, namely, that the
straight-line distance is the shortest one between two points. Let m + 1
points Xi = (x\, . . . , x\), . . . , X„+i = (x?+1, . . . , x™+1) be given in
Euclidean n-space. (Again assume n = 3 if it makes you more comfort
able.) The distance from Xi to Xm+i is certainly less than or equal to

the sum E XjXJ+1 of the distances from Xj to X)+i (j = 1, . . . , m);
i

that is
,

[n
—
11/2 m r n -|l/2

£ (** - ^m+l)2 £ £ £ (a£ - *?+1)2 .

fc = l J >-l l_/c = l J

If we let Ujk = Xj — Xj+i, then this inequality becomes
r n / m V 2-11/2 m r n "I1/2

(10) £fc(£«,.*) ^ £ 14 •

This is a special case of Minkowski's Inequality. (The above argument
based on geometric intuition is not a proof.) Equality holds if and only

if the points Xi, . . . , Xm+i lie on one straight line, that is
, if and only if

UJ.k ttj.H-1 /- i 17 1 1\. = = Cj (j = 1
, . . . , m — 1
; k = 1
, . . . , n — 1
)

where C
j depends only on j.

PROBLEM

36. (Lhuilier). Let T be a tetrahedron with volume V
,

surface area S
,

base area A>

and base perimeter P. Suppose To is a right tetrahedron (the foot of the altitude
to the base is the center of its circumcircle), and suppose that V = Vo, A = Ao,
and P & Po, where Vo, Ao, Po, and So are the volume, base area, etc. of To. Use
(10) to show that S ^ So. When is equality attained? hint:

S - A = £ fab,/ + fc2)1/8,

l

where oi, ai, 03 are the lengths of the sides of the base of T
,

pi, P2, P3 are the per
pendiculars from the center of the circumcircle of the base to its sides, and h is the

altitude on the base. (Why?) Also,

So - Ao = £(4A2 + VPlyl*. (Why?)
What can you show if T is a pyramid with an n-gon for a base, and To is a right
pyramid?

We now prove a theorem containing (10) as a special case.

Theorem 24. (Minkowski's Inequality). If the numbers Ujk (
j = 1
, . . . ,

m; k = 1
, . . . , n
) are nonnegative, and if p is a real number greater than

s~~
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or equal to 1, then

Ln
/ m \p~|l/p m r n "ll/p

E [Z %
*) J ^ E [E «& J ;

if 0< p < 1
, then

r n / m \p~|l/p m T n "ll/p

(12) E (E^) ^ E E u%\ .

In both cases equality holds if and only if the numbers in sets («n, . • • ,

«in), . . . , ("mi, . . . , Wmn) are proportional.

Proof. We shall prove the theorem only in the case m = 2 and

p > 1
.

(The case p = 1 is trivial, and the case m > 2 will be discussed

below.) In the case m = 2 we shall write .4* for «u and i?* for w2*, so
that the inequality we wish to prove is

[n

-|l/p / n \ Up / n \ 1/p
Z(Ak + Bk)'j ^(^^j + (?*7 (p>l).

Let l/g=l- 1/p, let 4* = ak and (^* + £*)p/8 = b
k in (7), and let

x = 1/p there. Then

n / n \ 1/p r n "11/s

(13) E^U(4* + fl4)p/9:g(E^) [E(^ + £*)PJ

.

Similarly,

(14) £ B*^* + Bk)*"> g (£ B?
) *

[e (Ak + £*)p]
Equality holds if and only if Bi = B2 = . . • = Bn = 0 or

<15> £— -£.
Since p = 1 + p/g,

(4* + B*)p - (Ak + Bk)(Ak + Bkyl*.
Therefore, by (13) and (14),

n [-/ n \l/p /n \ 1/p"! r n "11/4

E {Ak + Bhy $ Ijx; A
ij

+(EBSJ ] |_
E (^* + b*)pJ ;

or since — 1— = 1
,

p g
I- n -ll/p /n \l/p /n \l/p

[e(a*
+ b*)pJ ^\ZA»k) +V?m)

'

The condition for equality is (15). |

1/9
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In order to prove Theorem 24 when ra > 2, one may generalize (9)
to the case of

m

(16) A?Al* . . . AT £ E XiAi,
i

m

where £ z,- = 1 and each a;, is positive.
l

PROBLEM

37. Perform this generalization. {Can you use induction to establish Minkowski's In
equality for m > 2?} hint: If the xt are rational write the numbers x,- in the form
Vi/N (i = 1, . . . , to), where yt and N are integers, and apply Theorem 7.

You will find Minkowski's Inequality in his remarkable book, Geometrie der Zahlen,
I, pp. 115-117 (Leipzig, 1896).

Many of the most important applications of the Holder and Minkowski
Inequalities have to do with complex numbers. We therefore state one of
them in this case.

Holder's Inequality for complex numbers. If p > 1 and — |— = 1,
then P «

ki/«n I / n \ 1/p / n \ 1

EaibiU[Tt\ai\p) (ENJi

Equality holds if and only if |ai|p/|&j|9 is a constant independent of i and
the argument of afii is independent of i.

The proof is almost the same as when the a*'s and 6,'s are real. We need
n n

only note that £ aibi < H |a,*i| unless the argument of afii is inde-
1 i

pendent of t.
Analogues of the Cauchy, Holder, and Minkowski Inequalities in

which integration takes the role of finite summation are the forms of these

inequalities that are currently most used. Let us first of all consider
Bunyakovskii's analogue of Cauchy's Inequality. (Western writers often
refer to this as Schwarz's Inequality. Schwarz ["t)ber ein die Flachen
kleinsten Flacheninhalts betreffendes Problem der Variationsrechnung,"
Acta soc. sclent. Fenn. 15 (1885), pp. 315-362] obtained the same result

long after Bunyakovskii ["Sur quelques inegalites concernant les integrates
ordinaires et les integrates aux differences finies," Mtmoires de VAcad. de
St. Pitersbourg (VII), 1859, No. 9]. But in the nineteenth century little
attention was paid to scientific activity in Russia, and contributions of

fundamental importance were overlooked. [The present one is an almost
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trivial extension of Cauchy's work and the lion's share of credit belongs
to him]. A good compromise is to call the result the CBS-Inequality.)

Theorem 25. (The CBS-Inequality). If / and g are Riemann-integrable
real-valued functions on [a,b], then

/>
>

I r rb -ii/2 r fb -]i/2

f(x)g(x)dxU[] f*{*)dxj [J g2(x)dxj
-

Proof. It is clear that for any real number y,

F(y) - [ Wb) + g(*)]2 dx > o.Ja

If / f2(x) dx = 0, then/ ■ 0
, and (17) is obvious. Otherwise,

- f f(t)g(t) dt
Ja
rb
/2f /*(«) ds

(J f(y) dj/)(j[ g2(v) cf
o
) - (jf f(x)g(x) d
x
}

-7^ ^ 0.

J f\t)dt
Thus,

(j
f

/2(x) dx^(J S2(0 *)

- (/ /(«)(7(«) d
»
) ^ 0.|

When does equality hold?

Theorem 26. (Holder's Inequality ) . If / and g are continuous real-valued
functions denned on [a,b], if p > 1

, and if

i + i-i.

P 9

then

as) f/(0f(0*ur 1/(0(7(01*

I ya \ Ja

a
° \1/p / fb \Ut

|/(«)|*d»j (J |f(0|«<«j .

Equality holds if and only if at least one of / and g is identically zero or
/• g does not change sign on [a,b] and there exist positive constants a and

0 such that a\f\p m p\g\* on [a,b].
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Proof. If one of / and g is identically zero, (18) clearly holds. If
neither /nor g is identically zero, set x = 1/p, y = 1/g,

A- J/Wl' , and B HBt_

Ja Ja

in (9), and integrate from a to b. It follows that

[ \f(t)g(t)\dt f \f(t)\pdt f \g(t)\"dt

[j
f

|/(0|» cftJ'T/ \9(t)\9dtJ''

P

J\f(t)\»dt

q j \g(t)\<dt

p «

= 1
.

Equality holds if and only if A = B, that is, if and only if

(j
f

1(7(0 N
<
)

|/|p = (j
f

|/«N<) kl*-

The derivation of the remaining condition for equality is left as miscel
laneous Problem 39.|
It is obvious that both Theorems 25 and 26 hold if / and g are

complex-valued functions, except that the conditions for equality are more
complicated.

PROBLEM

38. Use (16) to generalize Theorem 26.

Theorem 27. (Minkowski's Inequality). If / and g are continuous real-
valued functions and if p ^ 1, then

r /•
*> -|i/p r fb -|i/p r f> -]Up

\_
J \f(t) + g(t) N<J g[J \f(t)\pdtj + []\g(t)\»dtj

.

PROBLEMS

39. Prove Theorem 27. When does equality hold?

40. Use the result of Problem 38 to generalize Theorem 27.

There are numerous inequalities related to those which we have

discussed in this chapter, and still further generalizations and extensions
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of the above theorems can be made. A reader who wishes to study these
generalizations and related inequalities seriously should read Inequalities
by G. H. Hardy, J. E. Littlewood, and G. P61ya (Cambridge Univ. Press,
1934). Although the text of this pamphlet ceases at this point, an im
portant portion of the pamphlet lies ahead. I am sure you will learn much
more by solving the remaining problems than you can by reading my
inadequate explanations. The problems immediately below are in part
applications of the material covered in this chapter and in part suggestive
of theories in which the inequalities which we have met have been of

great value.

PROBLEMS

41. Show that

5 f1 /3\2/3/5\1/8
(b>
5 < j a + x)t/i(1 + ,1)1/1 & < (y m <

fc) t < f (! + **)*" dx<[l+ 5-3/4]4/».
3 Jo

42. Definition. An infinite sequence (a,-) of real numbers is an element of the space
00

h if and only if 5Z a? converges,
l

(»
\l/2

53 a< 1 , which we denote

||a||, the norm of a. If a and b are elements of h, prove the following.

(a) For any real number k, fca is in h. (We define A;a = ifca,).) Moreover,

IIM = 1
*1 • l|a||.

(b) [a|| g 0
, and [a|| = 0 if and only if a = 0.

(c) Define a + b to be (a,- + &.). Then a + 1
> is in k, and

||
. + b|
| g ||a|| + ||b||.

Moreover, ||
a —

b
|| = ||b

— a||; and if c is in h,

II
* -

b
|| S ||
. -

c|
| + ||c - b||.

Thus we can interpret ||
a —

b
|| as the distance between the points a and b in h.

The space h is called a metric space for this reason, and the inequality ||
a + b
|| g

||a|| + ||b|| is known as the triangle inequality. Note the analogy between the
notion of absolute value or distance in Euclidean space and the notion of norm in £2.
One may think of h as a Euclidean space with infinitely many dimensions. The
analogy between Euclidean spaces and h can be extended still further. A scalar
product of two elements in h can be defined in analogy with the notion of the scalar
product of two vectors in three-dimensional Euclidean space; namely, we define

n

(a,b) = £ aibi.

1



THE SPACE I2 75

(d) Prove that 5Z "A converges (in fact, it converges absolutely), and thereby
1

show that the scalar product of any two elements of ^2 is well defined.

The number

(a,b)

Hall • ||b||

is called the cosine of the angle 6 between the vectors a and b (Fig. 28).

ibl

FIGURE 28

*-b

Show that |cose| S 1.
The first man to find and use the properties of the space h was David Hilbert.
h is called a Hilbert space in his honor.

43. Who was David Hilbert, and why is he famous?

44. State and prove the CBS-Inequality for multiple integrals.

45. Let / be a nonnegative continuous function defined on [a,b]. Let
fb Wr

J

9Rr(/) =
( f(s) ds
Ja

Prove that min/ < 9Rr(/) < max / unless / is constant.
[«M Ml

46. Let8(/) = exp
f ]nfdx
b — a

@ (/) is called the geometric mean of /. Prove that

and that equality holds only if / is constant.

47. Prove that if r > 0, then

9(/) S 9lU/);

and prove that equality holds if and only if / is constant.
48. Show that 8 (J) + 8 (g) S 8 (/ + 0)- When does equality hold?
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49. Prove that lim 9Hr(/) = @(/). (r —>0+ means r approaches zero only through

positive values.) Thus we may write 9Ho(/) = 8(/).

hint: e* > 1 + x for all x; therefore, e*-1 > x. Thus, In a; < a; — 1 if x > 0.

Show that In §{/) g-lnflCT).
r

50. Prove that, if r > » > 0, then 9R,(/) ^ 9R,(/). Equality holds if and only if/
is constant.

51. (H. Weyl). Prove that if the integrals below exist and if / is real-valued, then

/»
T r" "lI/2 T t" ~\lli

^
f(x) dx < 2 |J

_

^
x*f(x) d

x
j

\j_ _ f'Hx) dx
j

unless/ = ae-^. hint: Use Holder's Inequality.

52. Definition. Let / be a real-valued function defined on [a,b] and continuous on
[a,b] except at a finite number of points, f is in the space l2(a,b) if and only if

I f{x)dx
converges.

For example, x "4 is in 72(0,1), but x "' is not. Either one of a and b may be
chosen to be ± °° . Thus €~* is in L^{— x , » ), but el! and x are not. Let us call

r /* I1/2
the number / fix) dx \ the Ii norm of / (or more simply, the norm of /),
and let us denote it ||/||. Prove that
(a) If / and g are in 72(a,6), then / + g

, f • g, and kf (k a real number) are all
in hiafi).

(b) ll/H £ 0
, and ||/|| = 0 if and only if / = 0.

fc) m = i*
i • ii/ii.

(d) 11/ + ff|
|

^ II/II + ||(7||.
Thus, we may consider ||

/ — g
\\ as the distance between the points /and g of Ii(a,b)

and call /2(a,b) a metric space. Note that ||
/ —

ff
|| = \\
g —

f\
\ and ||
/ — g
\\ g

1
1
/ - H + \\h - g\\.

53. If the points xn (n = 1
, 2
,

3
, . . -) are in one-dimensional Euclidean space E1 (that

is
,

the real line) and if
,

given any i > 0, there is an integer N depending only on «,

such that

\x
n -

Xm\ < e

wherever n and mare greater than N, then lim zn exists, and this limit is in El. Such

a sequence is called a Cauchy sequence. However, as we have defined the space 1%,

it is not true that if the functions /n (n = 1
, 2
,

3
, . . -) are in 1 2 and if
,

given any

« > 0, there is an integer N depending only on c, such that ||/n — /m|| < e provided
n > m > N, then the sequence {/n) converges to a function in 1 \. Can you con
struct an example of this phenomenon? Because of this unhappy state of affairs

it is necessary to generalize the notion of integration and to introduce the process
lalled Lebesgue integration after its creator, Henri Lebesgue. If ||/|| is interpreted
n the context of Lebesgue integration, then the resulting extension of the 6pace

I^(flfi) is called L%(afi). A Cauchy sequence of functions in Lv(afi) always con
verges to a function in £2(0,6). The space Li, defined in terms of the Lebesgue

-.
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integral, is one of the most important mathematical spaces; for example, it is the
proper setting for the theory of Fourier series.
A metric space in which a scalar product has been defined and which is such that
every Cauchy sequence of elements of the space converges to an element of the

space is said to be a Hilbert space. Thus, L^(afi) is a Hilbert space if it is properly

defined— (f,g) = / f(x)g(x) dx.
Ja

54. Definition. An infinite sequence |aj) of real numbers is an element of the space

lp (p > 1) if and only if £ lai|p converges. |[a|| is defined to be 23 l«,lp

Show that lp has properties analogous to those of I2.

MISCELLANEOUS PROBLEMS

Prove the following assertions.

1. If x, y, and 2 are positive, and if x4 + y* + z4 = 27, then x + V + z S 3V3.

2. |osinx +6cosx| ^ (|a|2 + |6|2)1/2.

3. If x > 0 and if n > 1, then x/(n + x) < (x + l)1/n - 1 < x/n.
4. ||*|>/n
- Ij/I1/"! S \x - y\l<\

5. H 0 5 x S 1,

1
*1

< , ,. , . < Na + i«i)——- S In (1+ x) g .

1 + |a
s|

|1 + x|

6. If 0 < x < x/2, 2x + x cos z - 3 sin x > 0.

7. Ifa+0 + 7 = x, tan2 (a/2) + tan2 03/2) + tan2 (-y/2) & 1.

8. a;^z(a; + y + z) ^ x2j/2 + y2z2 + z2x2.

9. If x fe y & z >0, 8zyz g (x + y)Gy + z)(z + «).

10. If x & j/ > 0, (x + j/)(z3 + y3)(z' + y7) S 4(x11 + V11).

11. If x ^ y £ z > 0, 111 9

x j/ z x + y +z

12. If x + » = 1 and if x & y > 0, then (x + x-1)2 + (3
/

+ y-1)2 ^ ".
13. (x2 + j/2)1/2 5

i

|z
| + 2|y| 5 [5(z2 + y2)]1/2.

14. If z3 + j/
3 = z3 and if z, j/, and x are positive, then (zj//z2)3 S J.

15. If x > 0, x1/4 S 2z + |.

16. If 0 < x < 1/n, n = 1, 2, - . . , then (1 + z)n < (1 - nx)_1.
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17. (Cebysev). If Oi & o2 £ . . . £ on & 0 and if &i & 62 & . . . & 6, ^ 0, then

18. If x > 0,
n-1
E ft + l)x* ,

E <* + i)V tt

o

19. If n > 100, then 0 < 1 - cos (1/n) < J • 10-4.
20. If i > e10', then x1/100 > In x.
21. If p > 0, there is an N > 0 such that x" > In x provided x > JV.

22. If p and 3 are positive, there is an AT such that «*" > x" provided x > AT.

23. If p > 1 and |x
| * \y\, then 2"-1(|x|,> + Mp) > (|x| + \y\)'.

24. If p > 1
, n*-1 £ |x,|p > (t m)* unless |xi| = |x2| |*.J.

25. If o £ 6 > 0, a°tf> S: (
a +

6)°"H'.

2

26. (H. Bohr). If c> 0
,

\a + &
|2 ^ (1 + c)|o|* + fl + -\ |6|*.

27. (J. Berkes). If x, > 0 and £ (1 + x,)-1 £ n, then

0

IT xr1 S nn+l (n = 1
, 2
, . . .).

28. If a,- > 0 and xi g x2 ^ x3 g - . . ^ xn, then

n

*i S — ^ x,,.

£*

1

29. If x > 0, In (1+ x) S x(l - x)-1.
2*— 1 1

»• (»)

£

< £ j < » (n = 1
, 2
, . . .).

0>) j E 7 — InnMs a monotone sequence.

(0) ?ttTIJ]<1 ^ = 1-2.---)-

(d) ih<e<£h+^n (» = 1-2.---).
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31. (Lambek and Moser). Let a, b, h, r, and » be natural numbers. Let
« 1

h(n) = Y. - , and let lr(a) = h(ra) - h(r). Then
l *

(a) -?—£Ha + b)-hQ,) S i.
a + b 6

(b) 0 < ^(a) - Ua) <
r(r + 1)

(c) 0 ;£ /.(a) - ^(o) S - - - (r < «).r *

(d) 0 S ir(o6) - *,(<») - lT(b) < - .r
(e)
—

5
-7 £*,(« + l)-ir(<0<- .

a +.1 r

32. A continued fraction
h

(ill +

Ol + b
t

02 + . .65.
On +

is sometimes denoted Fc(aa, bil oi, 62: «*, . . . , &»: a* . . .)• Let -^o = «o, -Bo = 1
,

Ai = aiAo -\- biBi = ai£o, and let

An = OnAn-i + bnAn-2,

Bn = OnBn-.i + &B£n_2 (n = 2
,

3
, • . .).

(a) -An/.Bn = Fc(a0, b±: 01, 62: o2, . . . , 6n: 0.
(b) 4nB»_i - A^Bn = (-lJ^IIft*.

1

(c) If the a,'s and 6j's are positive, \A2n/Bin} is a monotone increasing sequence
and M2n+i/B2n+i) is a monotone decreasing sequence.

(d) Can you find a continued fraction which represents V 2?

1 i! n + 1 6 1 kz 1 Ar n

34. If 0 < Oi ^ 02 S . . . ^ on and p is positive, then

(n

\ l/p

35. |sin a:
— sin y\ < \x

— y
\ unless x = y. (Thus, the sine function is continuous.)

36. a:10 + Zx — 7 = 0 has at most two real roots.

37. If 0 £ x g y < t/2, then

2

x ^ sin X ^ - X, and (2
/ — x) sec2 z g tan y — tan x S (3
/ — x) sec* y.

x

/ x\v
38. If x and y are positive, e* > I 1 + - 1 .
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f(t) dt\ < I |/ft) | dt unless / does not change sign
on io,oj. . - I Ja

40. If aft ^ 0, then

Bin tdt [o + bj-lo- b\ 2

1'o Va2 + b2 -2ab cos t ah max (|o|, \b\)

eo

41. Let pn be the nth prime. E Pn1 diverges. Convince yourself that the following
l

lines do indeed constitute a proof of this remarkable assertion. Incidentally, it is
a consequence of this theorem that the number of primes is infinite. (Euclid's
proof is simpler.)

00

Proof. (E. Dux). Suppose E Pn l converges. Then if k is chosen large enough

(i
t fixed), *

E p7l = 9 < 1.

k

Having chosen k, we divide the natural numbers into three classes as follows:

n is in A if all prime factors of n are greater than or equal to pt,
n is in B if all prime factors of n are less than p*; 1 is in B,
all other n are in C. 11 1 "1
Each of the series E - > E - > and E ~ converges, for since E —

ninA n n in B n nioC » * Pr

converges,

1 "1 / • 1 \*

E 1<Z^- + ---+(E^) + .n in A n jf
c Pr \ k Pr/

E

1-9

1 1— 1 1

ni^B n 1 - 1/pi 1 - l/p2 1 - 1/pt-i
and

E i<(z i)(E 0-n in C n \n in A n/ \n in B n/

"1 1 1 1

Now, E - = E i + E - + E Ain ninA» «inS " n in C «

00 1 K 1 °° 1

so that if E — converges, so does E - . But E - diverges,l Pr in in
n

42. If 0 < x < x/2, then -§ tan z/4 £ £ sin kx g | cot x/4 (n = 1
, 2
, . - . ).

l

43. If a, &, and c are the lengths of the sides of a triangle and if A is its area, then
a2 + &

2

+ c2 > 4AVI unless a = 6 = c.

^T 44. (I. Newton). Suppose II Oj ^ 0. Define n + 1 numbers p,- byN l
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(a) pk-iPk+i <Pt (k = 1, . . - , n — 1) unless Oi ■»Oj — . . . — On. hint: Con

sider f(x,y) m 23 f , J Pkx'l-ky>!- Writing /(x,y) = 0 as an equation in x/y,
one sees that all its roots are real. f(0,y) ^ 0. Consequently,

dx'dyk
rj(x.y) = 0,

considered as an equation in x, does not have 0 for a multiple root (y ^0).
Therefore, by Rolle's Theorem, Pt_i*2 + 2pkt + pk+1 = 0 has real roots not
both zero. (Differentiate f(x,y) with respect to x or y and apply Rolle's
Theorem each time. In the end set x/y = t. )

(b) pi'* > pii(f+1) (J
b - 1, . . . , n - 1) unless oi = o» = . . . = o».

45. (a) If 0 < x < jt/2, then In (sec x) < 3 sin x tan x.

(b) There are numbers av and b
p such that if |x
| g ir/2 and p > 0
, then |sin x|p S

op cosp x + b
p cos px (p 7* 1, 3
,
5
,

7
, . - .).

46. Definition. If

.m+m•m*- 2
on an interval [0,6], then / is convex on that interval,

(a) If / is convex on [a,b],

on [a,b]. hint: Adapt Cauchy's proof of the Theorem of Arithmetic and
Geometric Means.

(b) What is the geometric interpretation of the above definition?

(c) Give several examples of functions convex on [0,1].

(d) If /is twice differentiable on (0,6), then

/"(x) § 0 on (0,6)

is both a necessary and sufficient condition that / be convex on (0,6).
(e) If /is twice differentiable on (0,6), then

1 xi /(si)

1 x2 /(x2) SO (a < xi < x2 < x3 < 6
)

1 X3 /(x3)

is equivalent to the condition that/"(x) & 0 on (a,6).

47. (a) A monotone increasing function of a convex function is convex,

(b) In ( / |/(<) |p dt J is a convex function of p for p > f.

1 n /\ n \

48. - $3 sin X,- i£ sin ( - £ xj ) if 0 < xi < . . - < xn < x.n 1 \n 1 /
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49. If x > y > 0 and r > 1, then

xT — vr
nTl < - < re*-1;

x — y
if 0 < r < 1, then

xr — vr
rx^1 < - < rjT"1.

x - y
n-l

hint: If a > 1, ror > 53 o*; hence,
0

aH-i _ ! ar _ x
> •

r + 1 r
Also, if 0 < 6 < 1,

1 _ ftH-I 1 _ &r
<

r + 1
Thus if r > *,

r s

50. If »i & »2 ^ . - . S »n ^ 0, then

ar - 1 a' - 1 ,1-6' 1-6*
and <

53 ui°i 25 "1 max
I 1 | l<k£,n

k

i
n n— 1 / * \ n

53 «Wi ■ 53 ( 22 «< ) ("*
-
»m-i) + "n 53 «*.

1 k=l \ 1 / 1

n-l / fc
hint:

51. If / is positive and monotone increasing for x Si 0, and if F(x) = / /(<) dt and
n io

F, = £/(*), then
o

F(n) gf.S F (n) +/(n).
52. (Jensen's Inequality). If p,- > 0 (» = 1, . . - , n) and if / is convex on (o,6), then

n \ n

§ — on (a,b).

ZPi
1

53. (W. H. Young). If /(0) = 0 and / is strictly increasing for x & 0 and if g is the
inverse function to /, then for a and 6 positive

ab g faf(x) dx + f g(y) dy.Jo Jo

Equality holds if and only if 6 = /(a).
hint: Sketch the graphs of / and g plotting f{x) against x and g{y) against y. Use
just one set of coordinate axes.

54. If one suitably chooses / and g, then by W. H. Young's Theorem, it follows that if
a and b are positive,

ap bq 11
ab S 1 , where — |- - = 1 (p > 1).
p q p q
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55. (a) If /is continuous on [a,b], then

■S*£t

hint: On one hand, choose any m such that 0 < m < M , and integrate over
the set of points where \f{x)\ ^ m. Then let m increase to M.

(b) Let / be continuous in the rectangle where a g x g 6 and c S y ^d, and let

lim I"
/" l/feOl'dxl '- l.u.b. \m\mM.

F(x) = j f(x,y)dy,
then (j

T |yfc)|»
*r
) * & jf [jT l/fe.y)!1' <k
j *

*V (p £ 1).

56. If / is convex on (o,6), then the limit lim - exists for x on (a,b)
h-0+ h

This limit is
,

of course, called the right-hand derivative of / at x. Show also that
this derivative is monotone on (o,6).

57. If / is convex on [a,b], if a g g(x) g b for e g x ^ d, and if the integrals below
exist, then

'[jf'iKxJdx] £[Mx)]dx.

58. If 0 < x < t, then £ —-— > 0 (n = 1, 2, . . .).

l *

fc

hint: Use induction. Suppose s*(x) » 53 (sin he) /I > 0 (A
;
= 1

, - . . , n — 1).

l

Further suppose sn(xo) S 0 for some io on (0,x) and that «n(xo) is a minimum for

»n(x). Use the facts below.

'/ s sin (n + h)x0 - sin §xp A
*B(xo) = „ . i = 0 (Why? Sum 2^ sin kx.)

2 sm fxo l

sin nxo = sin (n + ^)xo cos ^xo — cos (n + ^)xo sin Jxo.

59. If /is nonnegative and continuous on (0,r), then

r I /.*-

/(x) sin nx dx < / /(x) sin x dx unless / = 0.

I .'0

60. The function P whose values P{r,t) are given by P(r,<) = - . is

called the Poisson kernel.

(a) If 0 g r S 1, then

where z = re*'.

(b) If 0 S r < 1
, then

1 1 -r „, , 1 1 +r- • <
,

P(r,t) <
, — .

If
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(C) If J g r < 1,

2 (1
- r)2 + <*

(d) If 0 < x < t,

ZttX

2

fT —x rir

J (t+ x)P(r,t) dt - J tP(r,t) dt < fc

hist: - I P(r,t) dt = 1.r J—t
61. If y is defined and real on (0,x), if j/(0) = y(x) = 0, if y is in L2(0,x) and if y{x) =•

f y'bt) dt, then
JO

f yHx) dx < I* y'Hx) dxJo Jo

unless y is a multiple of sin x. hint: Show that lim x-1,2y(x) = 0 and that
x-0+

f (y'2 - y2) dx = /"' (;/' - y cot x)2 ic.
^o Jo

62. (E. Landau). If / is twice continuously differentiable on [0, » ), and if f" and / are
bounded for x S: 0, then

max |/'(x)| S 4 (max |/|)(max |/"|).
a-&0 x£U zgO

Some of the following geometrical theorems are really still conjectures
since they have never been proved. Several of the rest are also challenging.

You can find helpful discussions of extremal problems in geometry in the
following works: Maxima und Minima in der Elementaren Geometrie by
R. Sturm (B. G. Teubner, Berlin, 1910), Convex Figures by I. M. Yaglom
and V. G. Boltyanskil (translation by Paul J. Kelly and Lewis F. Walton,
Holt, Rinehart and Winston, 1961), and Geometric Inequalities by N. D.
Kazarinoff (Wesleyan Univ. Press and Random House, 1961).

63. Of all triangles inscribed in a given triangle (one vertex on each side), the one
formed by the feet of the altitudes of the given triangle has the least perimeter.

64. Definition. The diameter of a set is the least upper bound of the distances between
pairs of points of the set.
If A is the area of an n-gon of diameter 1, then

A S- cos I - I tan I — J -

2 \nj \2nJ
65. If one inscribes a triangle in a given triangle, the given triangle is subdivided into
four smaller ones.

(a) Of these, the inscribed triangle never has strictly the least area, hint: Find
out what an affine transformation is.

(b) (Conjecture). Of these, the inscribed triangle never has strictly the least

perimeter.
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66. Of all quadrilateral prisms with a given volume, the cube has the least surface area.

67. Let ABC be a triangle, and let P be a point in its interior. Let Ra = PA, Rb =
PB, and Re — PC. Denote the distance from P to AB by pc, to BC by pa, and
to CA by pa-

(a) _^+_^+_^_S2.
Ra +pa Rb + pb Rc + Pc

(b) RaRbRc § SpAVBpc

(c) (P. Erdos). flA + Rb + Rc ^ 2(pA + pb + Pc)-
When does equality hold?

68. (D. K. Kazarinoff). If ABCD is a tetrahedron, P is a point within it, Ra — PA,
PA is the distance from P to the face BCD, etc., then

Ra+Rb + Rc + Rd> 2\/2 (pA +PB+PC + Pd).

Proofs of this theorem are known only in case ABCD is a trirectangular tetrahedron
or in case the circumcenter of ABCD does not lie outside of ABCD.

69. (P. Ungar). Let n points be given in the plane, not all on a straight line, then the
shortest closed route connecting them is a simple polygon.

70. (Conjecture made by P. Ungar). Given a plane convex body B with two perpendicu
lar chords that cut its perimeter into four equal parts, then twice the sum of the
lengths of the chords is at least the perimeter of B. Equality holds only for rectangles.

(a) Prove the conjecture when the chords also bisect each other.

(b) Prove the conjecture when the chords bisect each other but are not necessarily
perpendicular.

(c) Try other special cases—even the general one.

71. Conjecture: Under the assumptions of Ungar's conjecture, the sum of the lengths of

the chords is at least the diameter of B.
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