Connected Sets in \mathbb{R} .

October 9, 2013

Theorem 1. The connected subsets of \mathbb{R} are exactly intervals or points.

We first discuss intervals.

Lemma 1. A set $X \subset \mathbb{R}$ is an interval exactly when it satisfies the following property: **P**: If x < z < y and $x \in X$ and $y \in X$ then $z \in X$.

Proof. If X is an interval \mathbf{P} is clearly true.

So suppose X is a set that satisfies **P**. Let $a = \inf(X), b = \sup(X)$. We allow $a = -\infty, b = +\infty$. Then X is an interval with endpoints a, b. Let a < z < b. Then by definition of $\sup(X)$ there is a point $y \le b$ of X such that z < y. Similarly there is a point $x \ge a$ of X such that x < z. Hence $z \in X$ (by **P**). This proves that X is an interval with endpoints a, b.

Now we prove the theorem.

Proof. First assume I is an interval. If I is disconnected then $I = A \cup B, A \neq \emptyset, B \neq \emptyset, \overline{A} \cap B = \emptyset, A \cap \overline{B} = \emptyset$. Let $a \in A, b \in B$ and assume a < b. Let $J = [a, b], A_1 = A \cap J, B_1 = B \cap J$. then $J = A_1 \cup B_1$ is a disconnection of J. Let $c = \sup(A_1)$ Then $c \in \overline{A_1}$ so $c \notin B_1$. But if $c < x \le b$ then $x \notin A_1$, by definition of $c = \sup(A_1)$. Hence $(x, b] \subset B_1$ and this implies $c \in \overline{B_1}$. So $c \notin A_1$. But c must be in either A_1 or B_1 since $c \in J = A_1 \cup B_1$. $\rightarrow \leftarrow$ (Contradiction).

Now suppose I is not an interval. Then by the lemma there are three points x < z < y with $x \in I, z \notin I, y \in I$. Let $A = \{p \in I, p < z\}, B = \{p \in I, p > z\}$. Then $I = A \cup B$ is a disconnection of I, so I is not connected.