Chain Rule

This document will derive the chain rule for composition of differentiable mappings. First a definition.
Definition 1. Suppose $\mathbb{R}^{m} \xrightarrow{F} \mathbb{R}^{n}$ is defined in an open set around a. We say that F is differentiable at a if

$$
F(x)=F(a)+P(x)(x-a),
$$

where P is continuous at a. In this notation P is an $n \times m$ function-valued matrix and $x-a$ is an $m \times 1$ column vector. We define the derivative $D F(a)$ of F at a to be the value $D F(a)=P(a)$. It's not hard to verify that if we let $F(x)=\left[f_{1}, \ldots, f_{n}\right]^{T}$, then

$$
\left[\begin{array}{cccc}
\left(f_{1}\right)_{x_{1}} & \left(f_{1}\right)_{x_{2}} & \ldots & \left(f_{1}\right)_{x_{m}} \\
\left(f_{2}\right)_{x_{1}} & & \ldots & \left(f_{2}\right)_{x_{m}} \\
\ldots & & & \ldots \\
\left(f_{n}\right)_{x_{1}} & \left(f_{n}\right)_{x_{2}} & \ldots & \left(f_{n}\right)_{x_{m}}
\end{array}\right](a)
$$

Theorem 1. Suppose $\mathbb{R}^{k} \xrightarrow{G} \mathbb{R}^{m} \xrightarrow{F} \mathbb{R}^{n}$ are such that G is differentiable at a and F is differentiable at $b=G(a)$. Then $\mathbb{R}^{k} \xrightarrow{H} \mathbb{R}^{n}$ defined by $H(x)=F(G(x))$ is differentiable at a and

$$
D H(a)=D F(b) D G(a),
$$

(matrix multiply).
Proof.

$$
\begin{aligned}
H(a+x) & =F(G(a+x))=F(G(a)+Q(x)(x-a)) \\
& =F(G(a))+P(G(a)+Q(x)(x-a))[Q(x)(x-a)] \\
& =F(b)+P(b+Q(x)(x-a))[Q(x)(x-a)] .
\end{aligned}
$$

Since $Q(x)$ is continuous at a and P is continuous at $b=G(a), P(G(a)+Q(x)(x-a)) Q(x)$ is continuous at $x=a$. This proves differentiability. The derivative is

$$
P(G(a)) Q(a)=P(b) Q(a)=D F(b) D g(a) .
$$

