Implicit Function Theorem

This document contains a proof of the implicit function theorem.

Theorem 1. Suppose F(x, y) is continuously differentiable in a neighborhood of a point $(a, b) \in \mathbb{R}^n \times \mathbb{R}$ and F(a, b) = 0. Suppose that $F_y(a, b) \neq 0$. Then there is $\delta > 0$ and $\epsilon > 0$ and a box $B = \{(x, y) : \|x - a\| < \delta, |y - b| < \epsilon\}$ so that

1. For each x such that $||x - a|| < \delta$ there is a unique y such that $|y - b| < \epsilon$ for which F(x, y) = 0. This correspondence defines a function f(x) on $\{||x - a|| < \delta\}$ such that

$$F(x, y) = 0 \Leftrightarrow y = f(x) \text{ for } (x, y) \in B.$$

- 2. f is continuous.
- 3. f is continuously differentiable and

$$Df(x) = -\frac{D_x F(x, f(x))}{F_y(x, f(x))},$$

where $Df = [f_{x_1}, ..., f_{x_n}]$ and $D_y F = [F_{x_1}, ..., F_{x_n}]$.

- Proof. 1. Choose $\delta_1 > 0$ and $\epsilon_1 > 0$ so that $F_y(x, y) > 0$ for $||x a|| < \delta_1$, $||y b|| < \epsilon_1$. Since F(a, b) = 0and F(a, y) is strictly increasing in y, $F(a, b + \epsilon_1/2) > 0$ and $F(a, b - \epsilon_1/2) < 0$. Let $\epsilon = \epsilon_1/2$ and choose $\delta < \delta_1$ so that $F(x, b + \epsilon) > 0$ and $F(x, b - \epsilon) < 0$ if $||x - a|| < \delta$. These dimensions define B. For fixed x with $||x - a|| < \delta$, since $F(x, b - \epsilon) < 0$, $F(x, b + \epsilon) > 0$, and F(x, y) is strictly increasing in y, the intermediate value theorem implies that there is a unique y with $||y - b|| < \epsilon$ such that F(x, y) = 0. The uniquely determined y defines a function f(x). This proves the first statement.
 - 2. We prove that f is continuous at a. Let e > 0 be given. Assume that $e < \epsilon$ Then by the proof of the first statement, there is a d > 0 (we may choose $d < \delta$) so that the uniquely defined f(x) in $\{||x a|| < d\}$ satisfies |f(x) b| < d. This proves continuity at a. We can repeat this argument at any point $(a_1, f(a_1)) \in B$, proving that f is continuous on $\{||x a|| < \epsilon\}$.
 - 3. By differentiability

$$0 = F(x, f(x)) = F(a, b) + \sum_{j} P_j(x, f(x))(x - a_j) + Q(x, f(x))(f(x) - f(a))$$
$$= \sum_{j} P_j(x, f(x))(x - a_j) + Q(x, f(x))(f(x) - f(a)),$$

where $P_j(x, f(x)), Q(x, f(x))$ are continuous at a. Rewrite this as

$$Q(x, f(x))(f(x) - f(a)) = -\sum_{j} P_j(x, f(x))(x - a_j).$$

Since Q(x, f(x)) is continuous at a and $Q(a, (f(a)) = f_y(a, b) > 0$, Q(x, f(x)) > 0 for x near a and we can divide by it to get

$$f(x) = f(a) + -\sum_{j} \frac{P_j(x, f(x))}{Q(x, f(x))} (x - a_j).$$

Each term $\frac{P_j(x, f(x))}{Q(x, f(x))}$ is continuous at a so f is differentiable at a. Moreover

$$f_{x_j}(a,b) = -\frac{F_j(a,b)}{F_y(a,b)}$$

You might like this bad notation:

$$\frac{\partial y}{\partial x_j} = -\frac{\partial F_{x_j}}{\partial F_y}.$$

-	-	٦	