Implicit Function Theorem

This document contains a proof of the implicit function theorem.
Theorem 1. Suppose $F(x, y)$ is continuously differentiable in a neighborhood of a point $(a, b) \in \mathbb{R}^{n} \times \mathbb{R}$ and $F(a, b)=0$. Suppose that $F_{y}(a, b) \neq 0$. Then there is $\delta>0$ and $\epsilon>0$ and a box $B=\{(x, y)$: $\|x-a\|<\delta,|y-b|<\epsilon\}$ so that

1. For each x such that $\|x-a\|<\delta$ there is a unique y such that $|y-b|<\epsilon$ for which $F(x, y)=0$. This correspondence defines a function $f(x)$ on $\{\|x-a\|<\delta\}$ such that

$$
F(x, y)=0 \Leftrightarrow y=f(x) \text { for }(x, y) \in B .
$$

2. f is continuous.
3. f is continuously differentiable and

$$
D f(x)=-\frac{D_{x} F(x, f(x)}{F_{y}(x, f(x))}
$$

where $D f=\left[f_{x_{1}}, \ldots, f_{x_{n}}\right]$ and $D_{y} F=\left[F_{x_{1}}, \ldots, F_{x_{n}}\right]$.
Proof. 1. Choose $\delta_{1}>0$ and $\epsilon_{1}>0$ so that $F_{y}(x, y)>0$ for $\|x-a\|<\delta_{1},|y-b|<\epsilon_{1}$. Since $F(a, b)=0$ and $F(a, y)$ is strictly increasing in $y, F\left(a, b+\epsilon_{1} / 2\right)>0$ and $F\left(a, b-\epsilon_{1} / 2\right)<0$. Let $\epsilon=\epsilon_{1} / 2$ and choose $\delta<\delta_{1}$ so that $F(x, b+\epsilon)>0$ and $F(x, b-\epsilon)<0$ if $\|x-a\|<\delta$. These dimensions define B. For fixed x with $\|x-a\|<\delta$, since $F(x, b-\epsilon)<0, F(x, b+\epsilon)>0$, and $F(x, y)$ is strictly increasing in y, the intermediate value theorem implies that there is a unique y with $|y-b|<\epsilon$ such that $F(x, y)=0$. The uniquely determined y defines a function $f(x)$. This proves the first statement.
2. We prove that f is continuous at a. Let $e>0$ be given. Assume that $e<\epsilon$ Then by the proof of the first statement, there is a $d>0$ (we may choose $d<\delta$) so that the uniquely defined $f(x)$ in $\{\|x-a\|<d\}$ satisfies $|f(x)-b|<d$. This proves continuity at a. We can repeat this argument at any point $\left(a_{1}, f\left(a_{1}\right)\right) \in B$, proving that f is continuous on $\{\|x-a\|<\epsilon\}$.
3. By differentiability

$$
\begin{aligned}
0=F(x, f(x)) & =F(a, b)+\sum_{j} P_{j}(x, f(x))\left(x-a_{j}\right)+Q(x, f(x))(f(x)-f(a)) \\
& =\sum_{j} P_{j}(x, f(x))\left(x-a_{j}\right)+Q(x, f(x))(f(x)-f(a)),
\end{aligned}
$$

where $P_{j}(x, f(x)), Q(x, f(x))$ are continuous at a. Rewrite this as

$$
Q(x, f(x))(f(x)-f(a))=-\sum_{j} P_{j}(x, f(x))\left(x-a_{j}\right) .
$$

Since $Q(x, f(x))$ is continuous at a and $Q\left(a,(f(a))=f_{y}(a, b)>0, Q(x, f(x))>0\right.$ for x near a and we can divide by it to get

$$
f(x)=f(a)+-\sum_{j} \frac{P_{j}(x, f(x))}{Q(x, f(x))}\left(x-a_{j}\right) .
$$

Each term $\frac{P_{j}(x, f(x))}{Q(x, f(x))}$ is continuous at a so f is differentiable at a. Moreover

$$
f_{x_{j}}(a, b)=-\frac{F_{j}(a, b)}{F_{y}(a, b)} .
$$

You might like this bad notation:

$$
\frac{\partial y}{\partial x_{j}}=-\frac{\partial F_{x_{j}}}{\partial F_{y}} .
$$

