Another Discussion of Least Squares

November 1, 2013

Suppose we are faced with solving the linear system of equations Ax = b where A is not square and the system has no solution. There are many versions of "do the best we can". One version called Tikhonov Regularization is as follows. We pick a convenient matrix L (maybe the identity matrix or maybe 0) and find the vector or vectors x that minimize

$$g(x) = ||Ax - b||^2 + ||Lx||^2.$$

In some contexts this is a best fit to for a problem that doesn't have a solution. This note will prove that the equation

$$A^T A x + L^T L x = A^T b$$

always has a solution that minimizes g(x) and for many L (for example L=I) the solution is unique.

Definition 1. A C^2 function f defined on all of \mathbb{R}^n is **convex** if the Hessian matrix $H = [h_{ij}] = [\partial_{x_1x_j}^2 f]$ is positive semidefinite.

Remark 1. Sometimes this is taken as a theorem. We will take it as a definition.

Proposition 1. Suppose a convex function f has a critical point a. Then $f(x) \ge f(a)$ for all x. If f has a minimum it is attained at a critical point. Hence if a convex function has a minimum it is unique. (The minimum may be attained at more than one point.)

Proof. The proof that if f has a minimum it is attained at a critical point is easy and will be left out. So suppose a is a critical point. Then by Taylor's theorem

$$f(x) = f(a) + \frac{1}{2}(x - a)^T H(c)(x - a),$$

where H(c) is the Hessian evaluated at some point between x and a. This is Lagrange's form for the remainder. Since $(x-a)^T H(c)(x-a) \ge 0$, $f(x) \ge f(a)$ and f has a minimum at a.

We compute the directional derivative $D_v g(x)$.

$$g(x+tv) = x^T A^T A x + 2tv^T A^T A x + t^2 v^T A^T A v - 2tv^T A^T b - 2x^T A^T b + ||b||^2 + x^T L^T L x + 2tv^T L^T L x + t^2 v^T L^T L v.$$

Now differentiate with respect to t and set t = 0 to get

$$2v^t[A^TAx - A^Tb + L^TLx] = 0,$$

or

$$(A^T A + L^T L)x = A^T b.$$

This is a generalization of the *normal equations*. Let us denote a solution of this equation by a. It is a critical point of q.

If we compute g''(0) at any point x we get $2v^T(A^TA + L^TL)v$, so the Hessian of g is

$$H = 2(A^T A + L^T L).$$

Since this is a positive semidefinite matrix, g is convex and the critical points (if they exist) are indeed points where g has a global minimum.

So we now address a general problem.

Problem 1. When does a linear equation Lx = b have a solution?

The answer is the

- **Theorem 1** (Fredholm Alternative). 1. Lx = b has a solution exactly when b is orthogonal to every vector z that is orthogonal to the column space of L. Hence there is a solution if $z^TL = 0$ implies that $z^Tb = 0$.
 - 2. Either Lx = b has a solution or there is a vector z so that $z^T A = 0$ and $z^T b \neq 0$.

These two statements are equivalent. The second statement is the alternative version of the theorem. Jim Burke says this is the Fundamental Theorem of the Alternative

Proof. We use the fact that in finite dimensional vector spaces the orthogonal complement of the orthogonal complement of a subspace W is W. So b is in the column space of L exactly when it is orthogonal to every vector orthogonal to the column space. That is what the theorem says.

How do we use this result? When does $(A^TA + L^TL)a = A^Tb$ have a solution? Suppose

$$z^T A^T A + z^T L^T L = 0.$$

Then

$$||Az||^2 + ||Lz||^2 = 0.$$

So Az = 0 and Lz = 0. But then $z^T A^T b = (Az)^T b = 0$ so there is always a solution and hence always a minimum.