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Suppose we are faced with solving the linear system of equations Ax = b where A is not square and the
system has no solution. There are many versions of “do the best we can”. One version called Tikhonov
Regularization is as follows. We pick a convenient matrix L (maybe the identity matrix or maybe 0) and
find the vector or vectors x that minimize

g(x) = ‖Ax− b‖2 + ‖Lx‖2 .

In some contexts this is a best fit to for a problem that doesn’t have a solution. This note will prove that
the equation

ATAx + LTLx = AT b

always has a solution that minimizes g(x) and for many L (for example L = I) the solution is unique.

Definition 1. A C2 function f defined on all of Rn is convex if the Hessian matrix H = [hij ] = [∂2
x1xj

f ]
is positive semidefinite.

Remark 1. Sometimes this is taken as a theorem. We will take it as a definition.

Proposition 1. Suppose a convex function f has a critical point a. Then f(x) ≥ f(a) for all x. If f has
a minimum it is attained at a critical point. Hence if a convex function has a minimum it is unique. (The
minimum may be attained at more than one point.)

Proof. The proof that if f has a minimum it is attained at a critical point is easy and will be left out. So
suppose a is a critical point. Then by Taylor’s theorem

f(x) = f(a) +
1

2
(x− a)TH(c)(x− a),

where H(c) is the Hessian evaluated at some point between x and a. This is Lagrange’s form for the
remainder. Since (x− a)TH(c)(x− a) ≥ 0, f(x) ≥ f(a) and f has a minimum at a.

We compute the directional derivative Dvg(x).

g(x+tv) = xTATAx+2tvTATAx+t2vTATAv−2tvTAT b−2xTAT b+‖b‖2+xTLTLx+2tvTLTLx+t2vTLTLv.

Now differentiate with respect to t and set t = 0 to get

2vt[ATAx−AT b + LTLx] = 0,

or
(ATA + LTL)x = AT b.

This is a generalization of the normal equations. Let us denote a solution of this equation by a. It is a
critical point of g.
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If we compute g′′(0) at any point x we get 2vT (ATA + LTL)v, so the Hessian of g is

H = 2(ATA + LTL).

Since this is a positive semidefinite matrix, g is convex and the critical points (if they exist) are indeed
points where g has a global minimum.

So we now address a general problem.

Problem 1. When does a linear equation Lx = b have a solution?

The answer is the

Theorem 1 (Fredholm Alternative). 1. Lx = b has a solution exactly when b is orthogonal to every
vector z that is orthogonal to the column space of L. Hence there is a solution if zTL = 0 implies
that zT b = 0.

2. Either Lx = b has a solution or there is a vector z so that zTA = 0 and zT b 6= 0.
These two statements are equivalent. The second statement is the alternative version of the theorem.

Jim Burke says this is the Fundamental Theorem of the Alternative

Proof. We use the fact that in finite dimensional vector spaces the orthogonal complement of the orthogonal
complement of a subspace W is W . So b is in the column space of L exactly when it is orthogonal to every
vector orthogonal to the column space. That is what the theorem says.

How do we use this result? When does (ATA + LTL)a = AT b have a solution? Suppose

zTATA + zTLTL = 0.

Then
‖Az‖2 + ‖Lz‖2 = 0.

So Az = 0 and Lz = 0. But then zTAT b = (Az)T b = 0 so there is always a solution and hence always a
minimum.
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